Trong Oxy, cho đường thẳng d: 2x - 3y + 1 = 0 . Tìm ảnh của đường thẳng d qua phép đối xứng tâm I( 2;1)
A. 2x + 3y - 1 =0
B. 2x -3y= 0
C. 2x - 3y + 3 = 0
D. Không thể xác định được
Đáp án B
Phép đối xứng tâm I(2; 1) biến đường thẳng d thành đường thẳng d'.
Biến mỗi điểm M(x, y) thuộc d thành điểm M' (x'; y') thuộc d'
Vì đường thẳng d' // hoặc trùng với d nên d' có dạng: 2x - 3y + c = 0
Lấy điểm M (1; 0) thuộc d. Tìm ảnh của M qua đối xứng tâm I.
I là trung điểm của MM' nên:
Vì M' thuộc d' nên : 2.3 -3.2 + c= 0 nên c =0
Vậy phương trình d' là : 2x - 3y = 0
Cho và A(–3;1). Ảnh của A qua phép tịnh tiến theo véctơ có toạ độ là:
Cho hình ngũ giác đều có tất cả bao nhiêu trục đối xứng và tâm đối xứng
Cho đường tròn (O; R), đường kính AB cố định và đường kính CD thay đổi. Tiếp tuyến với đường tròn (O) tại B cắt AC tại E, AD tại F. Tìm tập hợp trực tâm các tam giác CEF và DEF.
Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của AB, CD. BD lần lượt cắt CE, AF lần lượt tại K và H. Phép vị tự tâm H tỉ số k biến D thành B. Khi đó k bằng:
Trên đường tròn (O;R) cho hai điểm B, C cố định và một điểm A thay đổi. Gọi H là trực tâm của ABC và H' là điểm sao cho HBH' Clà hình bình hành. Tìm quĩ tích của điểm H.
Cho hai điểm cố định B, C trên đường tròn (O) và một điểm A thay đổi trên đường tròn đó. Tìm quĩ tích trực tâm H của ABC:
Trong các chữ: T, O, Q, U, C,W, L, có bao nhiêu chữ có trục đối xứng:
Cho các hình sau
1: Hình tròn
2: Đường thẳng
3: Đoạn thẳng
4. Hình vuông
5. Đa giác đều n cạnh
Trong các hình trên có bao nhiêu hình có vô số trục đối xứng
Cho 2 đường tròn (O) , (O’) có cùng bán kính, tiếp xúc với nhau. Phép biến hình nào sau đây không thể biến hình này thành hình kia: