Cho các hình sau
1: Hình tròn
2: Đường thẳng
3: Đoạn thẳng
4. Hình vuông
5. Đa giác đều n cạnh
Trong các hình trên có bao nhiêu hình có vô số trục đối xứng
A. 1
B. 2
C. 2
D. 3
Đáp án B
Trong các hình đã cho thì
1: Hình tròn có vô số trục đối xứng. Trục đối xứng là đường thẳng bất kì đi qua tâm đường tròn
2: Đường thẳng có vô số trục đối xứng. Trục đối xứng là đường thẳng d va các đường thẳng vuông góc với d
3: Đoạn thẳng có trục đối xứng là đường thẳng đi qua trung điểm đoạn thẳng và vuông góc đoạn thẳng đó
4. Hình vuông có 4 trục đối xứng: 2 đường chéo và 2 đường thẳng nối trung điểm 2 cạnhđối diện
5. Đa giác đều n cạnh:
* Nếu n chẵn : có trục đối xứng là các đường chéo; các đường thẳng nối trung điểm 2 cạnh đối diện
* Nếu n lẻ: có trục đối xứng là các đường thẳng nối 1 đỉnh với trung điểm cạnh đối diện
Vậy có 2 hình là có vô số trục đối xứng
Cho và A(–3;1). Ảnh của A qua phép tịnh tiến theo véctơ có toạ độ là:
Cho hình ngũ giác đều có tất cả bao nhiêu trục đối xứng và tâm đối xứng
Cho đường tròn (O; R), đường kính AB cố định và đường kính CD thay đổi. Tiếp tuyến với đường tròn (O) tại B cắt AC tại E, AD tại F. Tìm tập hợp trực tâm các tam giác CEF và DEF.
Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của AB, CD. BD lần lượt cắt CE, AF lần lượt tại K và H. Phép vị tự tâm H tỉ số k biến D thành B. Khi đó k bằng:
Trong Oxy, cho đường thẳng d: 2x - 3y + 1 = 0 . Tìm ảnh của đường thẳng d qua phép đối xứng tâm I( 2;1)
Cho hai điểm cố định B, C trên đường tròn (O) và một điểm A thay đổi trên đường tròn đó. Tìm quĩ tích trực tâm H của ABC:
Trên đường tròn (O;R) cho hai điểm B, C cố định và một điểm A thay đổi. Gọi H là trực tâm của ABC và H' là điểm sao cho HBH' Clà hình bình hành. Tìm quĩ tích của điểm H.
Trong các chữ: T, O, Q, U, C,W, L, có bao nhiêu chữ có trục đối xứng:
Cho parabol (P): . Tìm ảnh của parabol qua phép đối xứng tâm I(1; 2)