Cho hình chóp S.ABCD có đáy là hình bình hành tâm O, hai điểm M, N lần lượt là trung điểm của SB, SD; điểm P thuộc SC và không là trung điểm của SC. Gọi E là giao điểm của SO và MN; Q là giao điểm của SA và PE. Gọi F, G, H lần lượt là giao điểm của QM và AB, QP và AC, QN và AD. Tìm khẳng định đúng?
A. F nằm giữa G và H
B. 3 điểm F; G; H không thẳng hàng
C. G nằm giữa F và H
D. Tất cả sai
Từ (1) (2) và (3) suy ra ba điểm F, G, H thuộc giao tuyến của hai mặt phẳng (MNP) và (ABCD).
Do đó ba điểm F, G, H thẳng hàng và G nằm giữa F và H.
Chọn C.
Cho hình chóp S.ABCD có đáy là hình thang, đáy lớn AB và AB= 2CD. Gọi I, J, K lần lượt là ba điểm trên các cạnh SA; AB; BC. Gọi F là giao điểm của SD và (IJK). Tính tỉ số
Cho hình chóp S.ABCD có đáy là hình thang; đáy lớn AB. Gọi I; J; K lần lượt là 3 điểm trên SA; AB; BC. Gọi E là giao điểm của AK và BD; F là giao điểm của IK và SE; M là giao điểm của JK và BD. Tìm giao điểm của (IJK) và SD
Cho tứ diện SABC. Gọi K; N trung điểm SA và BC. M là điểm thuộc đoạn SC sao cho: 3SM = 2MC. Gọi E là giao điểm của AC và KM; NE cắt AB tại I. Tìm khẳng định đúng?
Cho hình chóp S. ABCD có đáy là hình thang; đáy lớn AB. Gọi I; J; K lần lượt là 3 điểm trên SA; AB; BC. Gọi E là giao điểm của AK và BD. Tìm giao điểm của IK và (SBD)
Cho tứ diện S.ABCD ; gọi D; E; F lần lượt là trung điểm của AB ; BC; SA. Gọi H là giao điểm của AE và CD. Gọi giao tuyến của 2 mặt phẳng (SCD) và (BFC) là CI. SH và CI cắt nhau tại O. Tính tỉ số
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O. Gọi M là trung điểm của SB, N là điểm thuộc đoạn SD sao cho SN = 2ND. Gọi K là giao điểm của đường thẳng SC và mặt phẳng (AMN). Gọi J giao điểm của AK và SO, tính
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O. Gọi M là trung điểm của SB, N là điểm thuộc đoạn SD sao cho SN = 2ND. Gọi E là giao điểm của đường thẳng MN và mặt phẳng ABCD. Tính
Cho hình chóp S.ABCD. Gọi M, N lần lượt là trung điểm của cạnh SA, SD, P là điểm thuộc cạnh SB sao cho: SP = 3 PB. Gọi O là giao điểm của AC và BD; E là giao điểm của PN và SO. Tìm giao điểm Q của SC và (MNP).
Cho hình chóp S.ABC; gọi H và K lần lượt là trọng tâm tam giác SAB và SBC; M là trung điểm CA và điểm I thuộc SM sao cho SI< SM. Gọi E là giao điểm của IK và MN; F là giao điểm của IH và MP. Tìm giao tuyến của (IHK) và (SBC).
Cho tứ diện S.ABC ; lấy điểm M là trung điểm SA; lấy điểm N là trọng tâm tam giác SBC và điểm P nằm trong tam giác ABC. Gọi I giao điểm của MN và (ABC). Tìm mệnh đề đúng?
Cho hình chóp S. ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi I,J là trung điểm SA; SB. Lấy điểm M tùy ý trên SD. Gọi H là giao điểm của AD và BC. Tìm giao điểm của IM và (SBC)
Cho hình chóp S.ABCD có đáy là hình thang ABCD, đáy lớn AD. Gọi E và F là hai điểm lần lượt nằm trên hai cạnh SB và CD. Gọi H là giao điểm của AC và BF. Tìm giao điểm của EF với mặt phẳng (SAC)
Hình chóp S.ABCD có đáy ABCD không là hình thang, điểm P nằm trong tam giác SAB và điểm M thuộc cạnh SD sao cho MD= 2 MS. Gọi N là trung điểm của AD, mặt phẳng (MNP) cắt hình chóp S.ABCD theo 1 thiết diện . tìm mệnh đề đúng?
Cho hình chóp S.ABCD, gọi M, N lần lượt là trọng tâm của tam giác SAB và SCD; E và F lần lượt là trung điểm của AB và CD. Gọi H là giao điểm của SA và BM và J là giao điểm của MN và SI. Xác định giao điểm của SD và (BMN) ?
Cho hình chóp S.ABC ; gọi H và K lần lượt là trọng tâm tam giác SAB và SBC; M là trung điểm CA và điểm I thuộc SM sao cho SI< SM. Tìm giao tuyến của (IHK) và (BAC)