Đưa biểu thức A = sin2(a + b) – sin2a - sin2b về dạng tích :
A. A = 2sina.sinb.cos (a + b)
B. A = 2 sina.cosb cos(a + b)
C. A = 2cosa.sinb.cos(a + b)
D. Đáp án khác
Chọn A.
Sử dụng công thức hạ bậc và biến đổi tổng thành tích ta có :
A = sin2(a + b) – sin2a - sin2b
= -cos2(a + b) + cos( a + b) cos(a - b)
= cos (a +b) [ cos( a - b) – cos(a + b) ]
= 2 sina. sinb.cos(a + b)
Cho hai góc nhọn a và b thỏa mãn cosa = 1/3, cos b = 1/4.Giá trị của cos( a + b) cos (a - b) bằng :
Cho sin a = 3/5 và cos a < 0 ; cos b = 3/4 và sin b > 0. Giá trị của sin(a - b) bằng :
Rút gọn biểu thức : cos( 1200 - x) + cos(1200 + x) - cosx ta được kết quả là
Biết rằng sin6x + cos6x = mcos 4x + n ; Trong đó m và n là các số hữu tỉ. Tính S = 5m- 3n.