Trên đường tròn đơn vị, gọi các điểm A, B, C, D lần lượt là các điểm (1;0), (0;1), (-1;0), (0;-1). Cho M, N, P, Q lần lượt là các điểm chính giữa các cung AB, BC, CD, DA. Cung có đầu mút là A và mút cuối trùng với một trong bốn điểm M, N, P, Q. Số do của cung trên là
A. α = 300+ k.3600
B. α= 600+ k.3600
Chọn D.
+ Ta có số đo cung
+ Ta có
+ Để mút cuối cùng trùng với một trong bốn điểm M; N; P; Q thì chu kì của cung α là
Vậy số đo cung
Cho A: B; C là các góc nhọn và tanA = 1/2, tanB = 1/5, tanC = 1/8,. Tổng A + B + C bằng
Một đường tròn có bán kính 15 cm . Tìm độ dài cung tròn có góc ở tâm bằng 300 là :
Cho góc α thỏa mãn và sinα + cosα > 0. Tính P = sin3 α + cos3 α.
Trong mặt phẳng định hướng cho tia Ox và hình vuông OABC vẽ theo chiều ngược với chiều quay của kim đồng hồ, biết sđ ( Ox; OA) = 300 + k.3600 . Khi đó sđ (Ox; BC) bằng:
Trong mặt phẳng định hướng cho tia Ox và hình vuông OABC vẽ theo chiều ngược với chiều quay của kim đồng hồ, biết sđ( Ox; OA) = 300 + k.3600. Khi đó sđ ( OA; AC) bằng:
Rút gọn biểu thức A = cos2x.cot2x + 3cos2x - cot2x + 2sin2x không phụ thuộc vào x và bằng
Trên đường tròn đơn vị, gọi các điểm A, B, C, D lần lượt là các điểm (1;0), (0;1), (-1;0), (0;-1). Cho L, M, N, P lần lượt là các điểm chính giữa các cung AB, BC, CD, DA. Cung có đầu mút trùng với A và có số đo . Mút cuối của trùng với điểm nào trong các điểm L, M, N, P?
Biết OMB’ và ONB’ là các tam giác đều. Cung α có mút đầu là A và mút cuối là B hoặc M hoặc N. Tính số đo của α?