Gọi n là số các giá trị của tham số m để phương trình mx+2=2m2x+4m vô số nghiệm. Thế thì n là:
A. 0
B. 1
C. 2
D. Vô số
Ta có: mx+2=2m2x+4m⇔m2m-1x=-22m-1*
Phương trình (∗) vô số nghiệm ⇔m2m−1=02−4m=0⇔m=12
Đáp án cần chọn là: B
Tìm m để phương trình m+1x2−2m−1x+m−2=0 có hai nghiệm x1,x2 thỏa mãn: x1+x2=2
Cho phương trình sau 3+4x=x-2. Chọn khẳng định đúng?
Tổng các lập phương hai nghiệm của phương trình x2−2x−8=0 là:
Số nghiệm của phương trình x−1x+2−3x−5x−2=2x2+x+3x2−4 là:
Phương trình 10x+1+3x−5=9x+4+2x−2* có nghiệm x0 thỏa mãn:
Số nghiệm của hệ phương trình xy=96x2+y2=208
Tìm m để phương trình x2−2m+1x+m2−1=0 có hai nghiệm phân biệt x1, x2 sao cho x12+x22+8x1x2 đạt giá trị nhỏ nhất
Phương trình 42−x−2−x=2 có bao nhiêu nghiệm?
Điều kiện xác định của phương trình x+2x=2x2+3x−4 là
Số nghiệm của phương trình x2+110x2−31x+24=0 là:
Số nghiệm của phương trình 2x+2x+2=−x2+2x+2 là:
Nghiệm của hệ phương trình 1x−2y=11x+2y=2 là:
Phương trình mx2−2m+1x+m=0 có hai nghiệm khi:
Nghiệm của phương trình 2x−7=1 là:
Nghiệm của phương trình 3x+3x2−1+4x−1=3 là:
Gieo một con xúc xắc cân đối và đồng chất. Giả sử con xúc xắc xuất hiện mặt b chấm. Xác suất sao cho phương trình x2 – bx + b – 1 = 0 (x là ẩn số) có nghiệm lớn hơn 3 là:
Gieo một con xúc xắc cân đối và đồng chất. Giả sử xúc xắc xuất hiện mặt b chấm. Xác suất để phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt là:
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có tọa độ các đỉnh A(–2; 0), B(–2; 2), C(4; 2), D(4; 0). Chọn ngẫu nhiên một điểm có tọa độ (x; y) (với x, y là các số nguyên) nằm trong hình chữ nhật ABCD, kể cả các điểm nằm trên cạnh. Gọi A là biến cố “x, y đều chia hết cho 2”. Xác suất của biến cố A là:
Có 4 hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có ai là:
Xếp ngẫu nhiên 10 học sinh gồm 5 học sinh nam (trong đó có Bình) và 5 học sinh nữ (trong đó có Phương) thành một hàng ngang. Số kết quả thuận lợi cho biến cố A: “Trong 10 học sinh trên không có hai học sinh cùng giới đứng cạnh nhau, đồng thời Bình và Phương cũng không đứng cạnh nhau” là:
Trong buổi sinh hoạt nhóm của lớp, tổ một có 12 học sinh gồm 4 học sinh nữ trong đó có Mai và 8 học sinh nam trong đó có Đức. Chia tổ thành 3 nhóm, mỗi nhóm gồm 4 học sinh và phải có ít nhất 1 học sinh nữ. Số kết quả thuận lợi cho biến cố A: “Mai và Đức cùng một nhóm” là:
Trong một buổi liên hoan có 10 cặp nam nữ, trong đó có 4 cặp vợ chồng. Chọn ngẫu nhiên 3 người để biểu diễn một tiết mục văn nghệ. Xác suất để 3 người được chọn không có cặp vợ chồng nào là:
Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp. Xác suất để 6 viên bi được lấy ra có đủ cả 3 màu là:
Một hộp quà đựng 16 dây buộc tóc cùng chất liệu, cùng kiểu dáng nhưng khác nhau về màu sắc. Trong hộp có 8 dây xanh, 5 dây đỏ, 3 dây vàng. Bạn Hoa được chọn ngẫu nhiên 6 dây từ hộp quà để làm phần thưởng cho mình. Xác suất để trong 6 dây bạn Hoa chọn có ít nhất 1 dây vàng và có không quá 4 dây đỏ là:
Có năm đoạn thẳng có độ dài lần lượt là 1 cm, 3 cm, 5 cm, 7 cm và 9 cm. Chọn ngẫu nhiên ba đoạn thẳng trong số năm đoạn thẳng trên. Xác suất để ba đoạn thẳng được chọn lập thành một tam giác là: