Tìm tất cả các giá trị thực của tham số m để hàm số y = −x2 + (m−1)x + 2 nghịch biến trên khoảng (1; 2).
A. m <5.
B. m > 5.
C. m < 3.
D. m > 3.
Với mọi ta có
Để hàm số nghịch biến trên (1; 2)
⇔ − (x1 + x2) + m – 1 < 0, với mọi x1, x2 ∈ (1; 2)
⇔ m < (x1 + x2) + 1, với mọi x1, x2 ∈ (1; 2)
⇔ m < (1 + 1) + 1 = 3
Đáp án cần chọn là: C
Biết rằng khi m = m0 thì hàm số f(x) = x3 + (m2 − 1)x2 + 2x + m − 1 là hàm số lẻ. Mệnh đề nào sau đây đúng
Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 − 4x + 5 trên khoảng (−∞; 2) và trên khoảng (2; +∞). Khẳng định nào sau đây đúng?
Cho hàm số y = mx2 − 2(m − 1)x + 1 (m≠0) có đồ thị (Cm). Tịnh tiến (Cm) qua trái 1 đơn vị ta được đồ thị hàm số (Cm′). Giá trị của m để giao điểm của (Cm) và (Cm′) có hoành độ x = thỏa mãn điều kiện nào dưới đây?
Tìm tất cả các giá trị thực của tham số m để hàm số xác định trên khoảng (−1; 3).
Tìm tất cả các giá trị thực của tham số m để hàm số xác định trên (0; 1).
Tìm tất cả các giá trị thực của tham số m để hàm số xác định trên (0; +∞).
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [−3; 3] để hàm số f(x) = (m + 1)x + m − 2 đồng biến trên R.
Xét sự biến thiên của hàm số f(x) = x + trên khoảng (1;+∞). Khẳng định nào sau đây đúng?
Tìm tất cả các giá trị thực của tham số m để hàm số xác định trên (-1; 0)