Tìm các giá trị thực của tham số m để phương trình |x2 − 3x + 2| = m có bốn nghiệm thực phân biệt.
A.
B.
C. m = 0
D.Không tồn tại
Số nghiệm của phương trình đã cho bằng số giảo điểm của đồ thị hàm số
y = |x2 − 3x + 2| với đường thẳng y = m có tính chất song song với trục hoành.
Ta có y = |x2 − 3x + 2|=
Đồ thị hàm số y = |x2 − 3x + 2| được vẽ như sau:
+ Vẽ đồ thị hàm số y = x2 − 3x + 2
+ Lấy đối xứng phần đồ thị phía dưới trục hoành qua trục hoành và xóa phần đồ thị dưới trục hoành đi.
Dựa trên đồ thị ta thấy phương trình đã cho có 4 nghiệm phân biệt khi và chỉ khi
0 < m < .
Đáp án cần chọn là: B
Cho hàm số y = ax2 + bx + c có đồ thị (P) như hình vẽ.
Khẳng định nào sau đây là sai?
Tìm giá trị của m để hàm số y = −x2 + 2x + m − 5 đạt giá trị lớn nhất bằng 6
Tìm giá trị của m để đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ dương
Viết phương trình của Parabol (P) biết rằng (P) đi qua các điểm A (0; 2),
B (-2; 5), C (3; 8)
Xác định parabol (P): y = 2x2 + bx + c, biết rằng (P) đi qua điểm M(0;4) và có trục đối xứng x = 1.
Nếu hàm số y = ax2 + bx + c có a < 0, b > 0 và c > 0 thì đồ thị của nó có dạng
Tìm các giá trị của tham số m để phương trình có 3 nghiệm phân biệt
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = f(x) = x2 − 4x + 3 trên đoạn [−2; 1].
Khi tịnh tiến parabol y = 2x2 sang trái 3 đơn vị, ta được đồ thị của hàm số:
Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt giá trị lớn nhất bằng 5 tại x = − 2 và có đồ thị đi qua điểm M (1; −1). Tính tổng S = a2 + b2 + c2.