A. Hai đoạn thẳng đối xứng với nhau qua một điểm thì chúng bằng nhau.
B. Hai góc đối xứng với nhau qua một điểm thì chúng bằng nhau.
C. Hai đường thẳng đối xứng với nhau qua một điểm thì chúng bằng nhau.
D. Hai tam giác đối xứng với nhau qua một điểm thì chúng bằng nhau.
Ta có tính chất: Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một điểm thì chúng bằng nhau.
Các phương án đúng là:
+ Đáp án A: Hai đoạn thẳng đối xứng với nhau qua một điểm thì chúng bằng nhau.
+ Đáp án B: Hai góc đối xứng với nhau qua một điểm thì chúng bằng nhau.
+ Đáp án D: Hai tam giác đối xứng với nhau qua một điểm thì chúng bằng nhau.
→ Đáp án C sai.
Cho hình vuông ABCD. Gọi I,K lần lượt là trung điểm của AD và DC.
a) Chứng minh rằng BI ⊥ AK.
Cho hình thang vuông ABCD có = 900 và CD = 2AB. Kẻ DE ⊥ AC, gọi I là trung điểm của EC. Chứng minh rằng = 900.
Cho hai điểm A, B cùng nằm trên một nửa mặt phẳng có bờ là đường thẳng d. Tìm trên d điểm M sao cho tổng MA + MB nhỏ nhất.
Cho hình vuông ABCD. Trên cạnh BC lấy điểm M, qua A kẻ AN ⊥ AM (điểm N thuộc tia đối của tia DC). Gọi I là trung điểm của MN. Chứng minh rằng:
a) AM = AN