2) Từ ý 1) ta nhận xét AD, BC thứ tự là các đường cao từ A,B của tam giác EAB nên H là trực tâm tam giác EAB. Vì vậy, hay .
Ta có tứ giác ECFB nội tiếp đường tròn đường kính EEB
Như vậy hay
Xét hai tam giác CEH và CBA đều vuông tại C và có
Cho nửa đường tròn (O) có đường kính AB = 2R. Lấy hai điểm phân biệt C và D trên nửa đường tròn (O) sao cho C thuộc cung AD (C,D không trùng với A, B). Gọi H là giao điểm của AD và ,E là giao điểm của AC và BD
1) Chứng minh tứ giác CEDH nội tiếp
2) Chứng minh rằng đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt A,B . Gọi lần lượt là hoành độ của A,B. Tìm các giá trị của m để
Cho a, b, c là các số thực dương thỏa mãn
Tìm giá trị lớn nhất của biểu thức3) Gọi F là giao điểm của EH và AB. Chứng minh H là tâm đường tròn nội tiếp tam giác CDF
4) Khi C,D thay đổi trên nửa đường tròn (O) sao cho , Chứng minh trung điểm I của EH thuộc một đường tròn cố định.
2) Cho biểu thức
Rút gọn biểu thức B và tìm tất cả các giá trị nguyên của x sao cho