Thứ sáu, 04/04/2025
IMG-LOGO

Câu hỏi:

22/07/2024 142

Cho tập A={1;2;3;....;2021} . Tìm số nguyên dương k lớn nhất (k>2) sao cho ta có thể chọn được k số phân biệt từ tập A mà tổng của hai số phân biệt bất kỳ trong k số được chọn không chia hết cho hiệu của chúng .

Trả lời:

verified Giải bởi qa.haylamdo.com

Gọi B là tập con của tập A thỏa mãn hai phần tử bất kỳ của B có tổng không chia hết cho hiệu

Dễ thấy trong 3 số tự nhiên liên tiếp ta chỉ có thể chọn 1 phần tử vào B . Thật vậy

Với 3 số x,x+1,x+2 nếu có 2 phần tử trong B thì :

x+(x+2)=2x+2chia hết cho (x+2)x=2

x+(x+1)=2x+1 chia hết cho x+1x=1 

(x+1)+(x+2)=2x+3 chia hết cho (x+2)(x+1)=1

Với cách xây dựng tập B như vậy thì số phần tử của B không thể lớn hơn [20213+1]=674

Tập B={1;4;7;.....;2020} có 674 phần tử thỏa mãn yêu cầu bài toán

Vậy giá trị lớn nhất của k là 674

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giải phương trình :135x+18x+8=61+x+3(5x)(x+8)

Xem đáp án » 19/10/2022 108

Câu 2:

Giải hệ phương trình : {x4+y4+6x2y2=1x(x+y)4=xy

Xem đáp án » 19/10/2022 98

Câu 3:

b) Giả sử PB = PC PC<PA. Gọi X, Y, Z lần lượt là hình chiếu vuông góc của I, K, L trên các cạnh BC, CA, AB. Dựng hình bình hành XYWZ . Chứng minh rằng W nằm trên phân giác BAC

Xem đáp án » 19/10/2022 96

Câu 4:

Tìm số nguyên dương n nhỏ nhất, biết rằng khi chia n cho 7, 9, 11, 13 ta nhận được các số dư tương ứng 3, 4, 5, 6

Xem đáp án » 19/10/2022 94

Câu 5:

Cho tam giác nhọn ABC có điểm P nằm trong tam giác (P không nằm trên các cạnh). Gọi I, K, L lần lượt là tâm đường tròn nội tiếp các tam giác PBC,PCA,PAB
a) Chứng minh rằng BJC+CKA+ALB=450°

Xem đáp án » 19/10/2022 89