Hàm số \(f(x) = \frac{3}{{\sqrt {x - 4} }}\) có tập xác định là:
Hướng dẫn giải:
Đáp án đúng là: C.
Điều kiện xác định của hàm số \(f(x) = \frac{3}{{\sqrt {x - 4} }}\) là: x – 4 > 0 ⇔ x > 4
Vậy tập xác định của hàm số \(f(x) = \frac{3}{{\sqrt {x - 4} }}\) là D = (4; +∞).
Cho hàm số \(f(x) = \sqrt {2x + 7} \).
Tìm tập xác định của hàm số.
Hàm số v = f(t) được cho bởi bảng như sau:
Tìm tập xác định của hàm số này.
Tập xác định của hàm số \(f(x) = \frac{{x + 3}}{{{x^2} + 1}}\) là:
Cho hàm số \(f(x) = \sqrt {2x + 7} \).
Tập giá trị của hàm số: \(f(x) = \frac{{2022}}{{\sqrt {2x - 2} }}\) là: