Cho (d): x= 2+3t; y = 3+t . Hỏi có bao nhiêu điểm M ∈ (d) cách A(9; 1) một đoạn bằng 5?
A. 3;
B. 2;
C. 1;
D. 0.
Đáp án đúng là: B
Ta có M ∈ (d).
Suy ra tọa độ M(2 + 3t; 3 + t).
Với A(9; 1) và M(2 + 3t; 3 + t) ta có:
Theo đề, ta có AM = 5.
⇔ (3t – 7)2 + (t + 2)2 = 25
⇔ 9t2 – 42t + 49 + t2 + 4t + 4 = 25
⇔ 10t2 – 38t + 28 = 0
⇔ t = 14/5 hoặc t = 1.
Vậy có hai điểm M thỏa mãn yêu cầu bài toán là , M(5; 4).
Do đó ta chọn phương án B.
Cho hai điểm A(4; 0), B(0; 5). Phương trình nào sau đây không phải là phương trình của đường thẳng AB?
Cho ∆ABC có A(2; 3), B(–4; 5), C(6; –5). Gọi M, N lần lượt là trung điểm của AB và AC. Phương trình tham số của đường thẳng MN là:
Cho ∆ABC có A(2; –1), B(4; 5), C(–3; 2). Phương trình nào sau đây là phương trình tổng quát của đường cao AH?
Giao điểm M của hai đường thẳng (d): và (d’): 3x – 2y – 1 = 0 là:
Đường thẳng d có một vectơ chỉ phương là . Đường thẳng ∆ vuông góc với d có một vectơ pháp tuyến là:
Cho hai điểm A(–2; 3) và B(4; –1). Phương trình đường trung trực của đoạn thẳng AB là:
Điểm nằm trên đường thẳng ∆: 2x + y – 1 = 0 và có khoảng cách đến (d): 4x + 3y – 10 = 0 bằng 2 là:
Tìm m để góc tạo bởi hai đường thẳng và ∆2: mx + y + 1 = 0 một góc bằng 30°.
Cho hai đường thẳng ∆1: 11x – 12y + 1 = 0 và ∆2: 12x + 11y + 9 = 0. Khi đó hai đường thẳng này
Cho ∆ABC có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0. Tọa độ điểm A là:
Phương trình của đường thẳng (d) song song với (d’): 6x + 8y – 1 = 0 và cách (d’) một đoạn bằng 2 là: