Mệnh đề nào dưới đây có mệnh đề phủ định của nó là đúng?
A. "∀x ∈ ℝ: x < x + 2";
B. "∀n ∈ ℕ: 3n ≥ n";
C. "∃x ∈ ℚ: x2 = 5";
D. "∃x ∈ ℝ: x2 – 3 = 2x".
Đáp án đúng là: C.
Mệnh đề phủ định của các mệnh đề đã cho là:
+ : "∃x ∈ ℝ: x ≥ x + 2"
Mệnh đề này sai vì:
Ta giả sử thay x = 0 vào bất phương trình x ≥ x + 2.
⇒ 0 ≥ 2 (vô lý).
+ : "∃n ∈ ℕ: 3n < n"
Mệnh đề này sai vì:
∀n ∈ ℕ: 3 ≥ 1 ⇒ 3n ≥ n.
+ : "∀x ∈ ℚ: x2 ≠ 5"
Mệnh đề này đúng vì:
x2 = 5 ⇔ x = ± ∉ ℚ.
+ : "∀x ∈ ℝ: x2 – 3 ≠ 2x "
Mệnh đề này sai vì:
x2 – 3 = 2x ⇔ x2 – 2x – 3 = 0
Mà phương trình x2 – 2x – 3 = 0 có hai nghiệm phân biệt là –1 và 3 nên có tồn tại số thực x để x2 – 3 = 2x.
Mệnh đề nào sau đây là phủ định của mệnh đề: “Mọi hệ phương trình đều vô nghiệm”.
Mệnh đề phủ định của mệnh đề P “∃x: x2 + 2x + 3 là số chính phương” là:
Cho mệnh đề A “∀x ∈ ℝ, x2 – 2x + 15 < 0”. Mệnh đề phủ định của mệnh đề A là:
Cho mệnh đề “Phương trình x2 – 6x + 9 = 0 vô nghiệm”. Tìm mệnh đề phủ định của mệnh đề đã cho và xét tính đúng, sai của mệnh đề phủ định.
Phủ định của mệnh đề: “Có ít nhất một số tự nhiên có hai chữ số chia hết cho 11” là mệnh đề nào sau đây:
Mệnh đề phủ định của mệnh đề “Có ít nhất một số thực x thỏa mãn điều kiện bình phương của nó là 1 số không dương” là: