Cho 4 điểm A, B, C, D phân biệt không thẳng hàng. Gọi I, J lần lượt là trung điểm của BC và CD. Tính:
A.
B.
C.
D.
Hướng dẫn giải:
Đáp án đúng là: A.
Xét tam giác BCD có:
I, J lần lượt là trung điểm của BC và CD
Do đó, IJ lần lượt là đường trung bình của tam giác BCD
.
Ta có:
(quy tắc ba điểm)
.
Vậy .
Cho tam giác ABC và G, H, O lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp của tam giác. Gọi D là điểm đối xứng của A qua O. Tính .
Cho tam giác ABC. Gọi M là trung điểm của AB và N là điểm trên cạnh AC sao cho NC = 2NA. Gọi K là trung điểm của MN. Khẳng định nào sau đây đúng ?
Cho tứ giác ABCD. Gọi E, F lần lượt là trung điểm của AB, CD, O là trung điểm của EF. Khẳng định nào sau đây là đúng ?
Cho tam giác ABC có D, E, F lần lượt là trung điểm của BC, CA, AB. Khẳng định nào sau đây là đúng ?
Cho tam giác ABC và G là trọng tâm. Và điểm O sao cho . Khẳng định nào sau đây là đúng ?
Cho tứ giác ABCD. Gọi E, F lần lượt là trung điểm của AB, CD, O là trung điểm của EF. Khẳng định nào sau đây là đúng ?
Cho tam giác ABC và G, H, O lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp của tam giác. Gọi D là điểm đối xứng của A qua O. Biểu thức bằng biểu thức nào dưới đây?
Cho tứ giác ABCD. Gọi I, J lần lượt là trung điểm của AB và CD, O là trung điểm của IJ. Đẳng thức nào sau đây đúng.