Nghiệm của phương trình \[\sqrt {x - 2} + \sqrt {x + 3} = 5\] thuộc khoảng nào trong các khoảng sau
A. (7; 10);
B. (2; 5);
C. (3; 7);
D. (- 2; 2).
Đáp án đúng là: C
Bình phương hai vế của phương trình đã cho ta có
x – 2 + x + 3 + 2\(\sqrt {(x - 2)(x + 3)} \) = 25
\( \Rightarrow \) \(\sqrt {{x^2} + x - 6} \) = 12 – x(1)
Bình phương hai vế của phương trình (1) ta có
x2 + x – 6 = (12 – x)2
\( \Rightarrow \) x2 + x – 6 = x2 – 24x + 144
\( \Rightarrow \) 25x – 150 = 0
\( \Rightarrow \) x = 6
Thay nghiệm trên vào phương trình ta thấy x = 6 thoả mãn
Vậy nghiệm của phương trình thuộc khoảng (3; 7)
Tích các nghiệm của phương trình \[{x^2} - 2x + 3\sqrt {{x^2} - 2x - 3} = 7\] là:
Có bao nhiêu giá trị nguyên của m để bất phương trình x2 + 3mx2 + 4mx + 4 ≥ 0 với mọi x \( \in \) ℝ.
Với x thuộc tập hợp nào dưới đây thì f(x) = 2x2 – 7x – 15 không âm?
Gọi x là nghiệm của phương trình
\(\sqrt {3x - 2} + \sqrt {x - 1} = 4x - 9 + 2\sqrt {3{x^2} - 5x + 2} \)
Tính giá trị của biểu thức A = x2 – 3x + 15
Số nghiệm của phương trình 4x2 – 12x + 5\(\sqrt {4{x^2} - 12x} \) = 0
Cho f(x) = mx2 – 2x – 1. Xác định m để f(x) ≤ 0 với \[\forall x \in \mathbb{R}\].
Cho f(x) = x2 – 4. Tìm khẳng định sai trong các khẳng định sau đây
Biểu thức f(x) = (m2 + 2)x2 – 2(m – 2)x + 2 luôn nhận giá trị dương khi và chỉ khi:
Tích các nghiệm của phương trình x2 + 2\(\sqrt {{x^2} - 3x + 11} \) = 3x + 4 là
Tổng các nghiệm của phương trình \(\sqrt {x + 3} + \sqrt {6 - x} = 3 + \sqrt {(x + 3)(6 - x)} \) (*) là
Xác định m để bất phương trình x2 + 2(m – 2)x + 2m – 1 > 0 có nghiệm với mọi x \( \in \) ℝ.