Một hộ gia đình tính chi phí sử dụng đèn và máy lạnh trong nhà. Biết đèn sử dụng trong 1 giờ tốn 500 đồng và máy lạnh sử dụng trong 1 giờ tốn 1 nghìn đồng. Hỏi số giờ sử dụng đèn trong 1 ngày và số giờ sử dụng máy lạnh trong 1 ngày để tổng số tiền điện trong một tháng (30 ngày) ít hơn 1 triệu đồng lần lượt là bao nhiêu ? (Biết căn nhà có 3 cái đèn và 2 cái máy lạnh)
Hướng dẫn giải
Đáp án đúng là: A
Gọi x (giờ) là số giờ sử dụng đèn trong 1 ngày và y (giờ) là số giờ sử dụng máy lạnh trong 1 ngày (x, y ≥ 0)
0,5x . 3 . 30 (nghìn đồng) là số tiền phải trả khi sử dụng đèn trong 1 tháng.
y . 2 . 30 (nghìn đồng) là số tiền phải trả khi sử dụng máy lạnh trong 1 tháng.
Ta có: 1 triệu = 1 000 nghìn đồng.
Để tổng số tiền điện trong một tháng ít hơn 1 triệu đồng thì :
0,5x . 3 . 30 + y . 2 . 30 < 1000 ⇔ 45x + 60y < 1000 (*).
Thay cặp số 15 giờ và 5 giờ vào bất phương trình trên ta được
45 . 15 + 60 . 5 = 975 < 1000, thỏa mãn.
Vậy có thể sử dụng đèn 15 giờ/ngày và sử dụng máy lạnh 5 giờ/ngày để tiền điện phải trả trong 1 tháng nhỏ hơn 1 triệu đồng.
Biểu thức F = y – x đạt giá trị nhỏ nhất với điều kiện tại điểm có toạ độ là
Một người thợ được thuê làm một cái hồ bơi và một vườn hoa trên mảnh đất có diện tích là 200 m2 và phải để diện tích lối đi tối thiểu là 50 m2. Diện tích của hồ bơi và vườn hoa thỏa mãn các điều kiện trên lần lượt là:
Giá trị lớn nhất của biểu thức G(x; y) = 10x + 20y trên miền xác định bởi hệ là :
Một xưởng sản xuất sử dụng ba loại máy để sản xuất hai loại sản phẩm quần và áo. Để sản xuất 1 cái áo lãi 200 nghìn đồng người ta sử dụng máy I trong 1 giờ, máy II trong 2 giờ và máy III trong 3 giờ. Để sản xuất 1 cái quần lãi 300 nghìn đồng người ta sử dụng máy I trong 3 giờ, máy II trong 4 giờ mà máy III trong 2 giờ. Biết rằng máy I chỉ hoạt động không quá 50 giờ, máy II hoạt động không quá 70 giờ và máy III hoạt động không quá 48 giờ. Hỏi phải sản xuất bao nhiêu quần và áo để xưởng sản xuất đạt mức lãi cao nhất ?