Bảng xét dấu nào sau đây là của f(x) = 6x2 + 37x + 6?
A.
B.
C.
D.
Hướng dẫn giải
Đáp án đúng là: B
Tam thức bậc hai f(x) = 6x2 + 37x + 6 có ∆ = 372 – 4.6.6 = 1225 > 0.
Do đó f(x) có hai nghiệm phân biệt là:
Ta có a = 6 > 0.
Ta có bảng xét dấu f(x) như sau:
Vậy ta chọn phương án B.
Cho tam thức bậc hai f(x) = x2 + 1. Mệnh đề nào sau đây đúng nhất?
Cho tam thức bậc hai f(x) = x2 – 10x + 2. Kết luận nào sau đây đúng?
Cho hàm số y = f(x) có đồ thị như hình bên.
Bảng xét dấu của tam thức bậc hai tương ứng là:
Cho hàm số bậc hai f(x) có đồ thị như hình bên.
Tập nghiệm của bất phương trình f(x) ≥ 0 là:
Cho f(x) = –x2 – 4x + 5. Có bao nhiêu giá trị nguyên của x thỏa mãn f(x) ≥ 0?
Cho tam thức bậc hai f(x) = –2x2 + 8x – 8. Trong các mệnh đề sau, mệnh đề nào đúng?
Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ.
Đặt ∆ = b2 – 4ac. Chọn khẳng định đúng?