Cho hình lập phương ABCD.EFGH có cạnh bằng a. Tính d(AB, (EFGH)).
Hướng dẫn giải
Đáp án đúng là: C
Ta có AE ^ (EFGH)
Þ d(AB,(EFGH)) = d(A,(EFGH)) = AE = a.
Giả sử u = u(x), v = v(x) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Đẳng thức đúng là
Cho hình chóp S.ABC có đáy là tam giác đều cạnh 4a. Biết SB vuông góc với mặt đáy, P là trung điểm của cạnh AC.
Chứng minh rằng AC ^ (SBP).
Cho hai hàm số f(x), g(x) thỏa mãn \(\mathop {\lim }\limits_{x \to 1} f(x)\)= −6 và \(\mathop {\lim }\limits_{x \to 1} g(x)\)= 3. Giá trị của \(\mathop {\lim }\limits_{x \to 1} \left[ {f(x) - g(x)} \right]\) bằng:
Cho hình lập phương ABCD.A’B’C’D’. Bộ ba vectơ nào sau đây đồng phẳng?
Cho hình chóp S.ABC có SA ^ (ABC).
Góc giữa đường thẳng SC và mặt phẳng (ABC) là
Tính các giới hạn sau.
A = lim\(\frac{{2{n^2} - n + 2}}{{3{n^2} + 5n}}\)
Cho hình lập phương ABCD.EFGH có cạnh bằng a. Tính \(\overrightarrow {AB} .\overrightarrow {EG} \) bằng
Tổng S = 1 + \(\frac{1}{2}\)+ \(\frac{1}{4}\)+ … + \(\frac{1}{{{2^n}}}\)+ … có giá trị là