Chứng minh rằng phương trình m(x - 1)3(x2 - 4) + x4 - 3 = 0 luôn có ít nhất hai nghiệm phân biệt với mọi giá trị m
Ta có:
+) f (x) = m(x - 1)3(x2 - 4) + x4 - 3 = 0 liên tục trên ℝ nên f (x) liên tục trên đoạn [-2; 1] (1)
Mặt khác:
+) f(–2) = m(–2 – 1)3 . [(–2)2 – 4] + (–2)4 – 3 = 13;
+) f(1) = m(1 – 1)3 . (12 – 4) + 14 – 3 = –2.
Do đó f (-2).f (1) = 13.(-2) = - 26 < 0 (2)
Từ (1) và (2) nên f (x) = 0 cho ít nhất 1 nghiệm x thuộc [-2; 1] (*)
+) f (x) = m(x - 1)3(x2 - 4) + x4 - 3 = 0 liên tục trên ℝ nên f (x) liên tục trên đoạn [1; 2] (3)
Ta lại có:
+) f(2) = m.(2 – 1)3 . (22 – 4) + 24 – 3 = 13;
+) f(1) = m(1 – 1)3 . (12 – 4) + 14 – 3 = –2.
Do đó f (2).f (1) = 13.(-2) = - 26 < 0 (4)
Từ (3) và (4) nên f (x) = 0 cho ít nhất 1 nghiệm x thuộc [1; 2] (**)
Từ (*) và (**) nên suy ra f (x) = 0 cho ít nhất hai nghiệm phân biệt thuộc [-2; 2]
Vậy phương trình m(x - 1)3(x2 - 4) + x4 - 3 = 0 luôn có ít nhất hai nghiệm phân biệt với mọi giá trị m.
Hàm số nào trong các hàm số sau không liên tục trên khoảng (0; 3):
Cho các hàm số f, g có giới hạn hữu hạn khi x dần tới x0. Khẳng định nào sau đây đúng?
Trong không gian, cho ba đường thẳng phân biệt a, b, c. Khẳng định nào sau đây đúng?
Cho hàm số với m là tham số thực. Tìm m để hàm số liên tục tại x = 1.
Cho tứ diện ABCD. Gọi P, Q là trung điểm của AB và CD. Chọn khẳng định đúng?
Cho hàm số f (x) xác định trên đoạn [a, b]. Trong các mệnh đế sau, mệnh đề nào đúng?