Cho cấp số cộng (un) có u1 = 2 và công sai d = 5. Mệnh đề nào sau đây đúng?
A. u3 = -3;
Đáp án đúng là: D
Công thức tổng quát các số hạng của cấp số cộng (un) là:
un = u1 + (n - 1).d
Với u1 = 2, d = 5 ta có: un = 2 + (n - 1).5
Từ đây ta có:
u2 = 2 + (2 - 1).5 = 7;
u3 = 2 + (3 - 1).5 = 12.
Vậy mệnh đề đúng là u2 = 7.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là điểm thuộc cạnh BC và (a) là mặt phẳng đi qua điểm M và song song với mặt phẳng (SAB). Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (a) là một:
Cho cấp số cộng (un) có u7 = 27 và u20 = 79. Tổng 30 số hạng đầu của cấp số cộng này bằng
Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm SA, SD. Mặt phẳng (OMN) song song với mặt phẳng nào sau đây?
Cho cấp số cộng (un) thoả mãn Số hạng đầu u1 và công sai d của cấp số cộng đã cho lần lượt là
Cho dãy số: -1; x; 0,36. Tìm x để dãy số đã cho theo thứ tự lập thành cấp số nhân.