Tính giới hạn limx→+∞x2+2x−x3+3x23
Giá trị của a để limn2−4n+7+a−n=0 là
Giá trị lim4n2+1−n+22n−3 bằng
Giá trị limx→11−x2−x−1 bằng
Tìm các giá trị thực của tham số m để hàm số fx=x+mkhi x<0x2+1khi x≥0 có giới hạn tại x=0
Giá trị limx→3x+1−5x+1x−4x−3=ab a, b∈ℤ, ab ( a, b∈ℤ, ablà phân số tối giản). Giá trị a-b bằng
Cho a, b là các số dương. Biết limx→−∞9x2−ax+27x3+bx2+53=727 . Giá trị lớn nhất của tích ab bằng
Cho limx→∞x2+x+2−2x3+5x+13x2−1=ab (a, b∈ℤ, ab là phân số tối giản). Giá trị tổng a2+b2 bằng
Cho hàm số fx=5x−1−2x−1, x>1mx+m+14, x≤1 (m là tham số). Tìm giá trị của m để hàm số liên tục trên R.
Giá trị limx→0cos3x−cos7xx2 bằng
Hàm số nào sau đây không liên tục tại x=2 ?
Nếu limx→2fx=2 thì limx→23−4fx bằng
Cho biết limx→16+ax2−bx−2x3−x2−x+1=c với a, b, c∈ℝ . Tìm a, b, c.
Cho hàm số y=sinx2. Đạo hàm yn là
Đạo hàm cấp n của hàm số y=xx2+5x+6 là
Đạo hàm cấp n của hàm số y=2x+1x2−3x+2là
Đạo hàm cấp n của hàm số y=2x+1 là
Cho hàm số y=sin22x. Giá trị của biểu thức y3+y''+16y'+16y−8 là