a) Trong một hộp chứa sáu quả cầu trắng được đánh số từ 1 đến 6 và ba quả cầu đen được đánh số 7, 8, 9. Có bao nhiêu cách chọn một trong các quả cầu ấy?
a) Vì các quả cầu trắng hoặc đen đều được đánh số phân biệt nên mỗi lần lấy ra một quả cầu bất kì là một lần chọn.
* Nếu chọn một quả trắng có 6 cách.
* Nếu chọn một quả đen có 3 cách.
Theo quy tắc cộng, ta có 6+3=9 cách chọn.Cho hình chóp S.ABCD có đáy là hình thang ABCD (AD // BC). Gọi M là trung điểm CD. Giao tuyến của hai mặt phẳng (MSB) và (SAC) là
c) Tìm tất cả các giá trị thực của tham số m để phương trình có đúng 3 nghiệm thuộc khoảng .
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M và N lần lượt là trung điểm của AB và SC.
a) Xác định giao điểm I, K của đường thẳng AN, MN với (SBD).
Cho tam giác đều ABC. Góc quay của phép quay tâm A biến B thành C là
Trong mặt phẳng Oxy, cho phép biến hình f xác định như sau: Với mỗi ta có sao cho thỏa mãn . Khẳng định đúng là
Số giá trị nguyên của tham số m thuộc đoạn để phương trình có nghiệm là
Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ?
c) Từ một nhóm học sinh lớp 10A gồm 5 bạn học giỏi môn Toán, 4 bạn học giỏi môn Lý, 3 bạn học giỏi môn Hóa, 2 bạn học giỏi môn Văn (mỗi học sinh chỉ giỏi đúng một môn). Đoàn trường chọn ngẫu nhiên 4 học sinh để tham gia thi “hành trình tri thức”. Tính xác suất để chọn được 4 học sinh sao cho có ít nhất 1 bạn học giỏi Toán và ít nhất 1 bạn học giỏi Văn.