Gọi S là diện tích của hình phẳng giới hạn bởi các đồ thị hàm số y = x2 + 3 và y = 4x. Mệnh đề nào sau đây đúng?
A.
B.
C.
D.
Đáp án đúng là: A
Hoành độ giao điểm của hai đồ thị hàm số y = x2 + 3 và y = 4x là nghiệm của phương trình
x2 + 3 = 4x
Û x2 - 4x + 3 = 0
Û x2 - 3x - x + 3 = 0
Û x(x - 3) - (x - 3) = 0
Û (x - 1). (x - 3) = 0
S là diện tích của hình phẳng giới hạn bởi các đồ thị hàm số y = x2 + 3 và y = 4x nên
Trong không gian Oxyz, cho hình bình hành ABCD có đỉnh A(-1; 4; 1), phương trình đường chéo , đỉnh C(a; b; c) thuộc mặt phẳng (P): x + 2y + z - 4 = 0. Khi đó giá trị của S = a + b + c là:
Cho các số thực x, y thỏa 3x + y - 3xi = 2y - 1 + (x - y)i. Khi đó giá trị của M = x + y là:
Trong không gian Oxyz, cho hai điểm A(2; 1; 0), B(-2; 3; 2) và đường thẳng Phương trình mặt cầu đi qua hai điểm A, B và có tâm nằm trên đường thẳng d là:
Trong không gian Oxyz, cho hai mặt phẳng (P): x - y + 2z - 1 = 0, (Q): x + 2y - z + 2 = 0. Tính góc giữa hai mặt phẳng (P) và (Q) được kết quả là
Gọi z1, z2 là hai nghiệm phức của phương trình: z2 - z + 1 = 0. Khi đó |z1| + | z2| bằng:
Trên mặt phẳng Oxy, gọi A, B, C lần lượt là các điểm biểu diễn các số phức Khi đó tam giác ABC là: