Cho x, y > 0 và α, β ∈ ℝ . Khẳng định nào sau đây sai?
A. (xy)α = xα. yα.
B. xα. yβ = xα+β.
C. xα + yβ = (x + y)α.
Đáp án đúng là C
Theo tính chất, ta có:
(xy)α = xα. yα vậy đáp án A đúng
xα. yβ = xα+β vậy đáp án B đúng
(xα) β = x αβ vậy đáp án B đúng
Không có tính chất nào là xα + yβ = (x + y)α vậy nên đáp án C là đáp án sai. Do đó chọn C.
Cho hàm số y = f (x) có đạo hàm liên tục trên khoảng (1; +∞) thỏa mãn [xf '(x) − 2 f (x)] lnx = x3 – f (x), ∀ x ∈ (1; + ∞); và f ( ) = 3e. Giá trị nhỏ nhất của hàm số y = f (x) trên khoảng (1; +∞) thuộc khoảng nào dưới đây?
Cho bất phương trình log7(x2 +2x + 2) + 1 > log7(x2 + 6x + 5 + m). Có tất cả bao nhiêu giá trị nguyên của m để bất phương trình trên có tập nghiệm chứa khoảng (1; 3)?
Cho hình lăng trụ tam giác đều ABC.A'B'C' có độ dài cạnh đáy bằng a , độ dài cạnh bên bằng 2a. Thể tích của khối cầu ngoại tiếp hình lăng trụ đó bằng
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A (1; 3; 5), B (2; 0; l), C (0; 9; 0). Tìm tọa độ trọng tâm G của tam giác ABC.
Cho khối nón có bán kính đáy bằng 2, chiều cao bằng 3. Thể tích của khối nón đã cho bằng
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình 22x+4 − .m = 0 có hai nghiệm thực phân biệt?
Cho hàm số f (x) có đạo hàm liên tục trên đoạn [−1; 3] và thỏa mãn f (−1) = 4, f (3) = 7. Giá trị của I = bằng
Cho hàm số y = f (x) liên tục trên [a; b] , viết công thức tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = f (x), trục Ox và các đường thẳng x = a, x = b (a < b).
Kí hiệu z1, z2 là hai nghiệm phức của phương trình 2z2 – 4z + 11 = 0. Giá trị biểu thức P = 2z1z2 + 2z1 + 2z2 bằng
Cho mặt cầu có diện tích bằng 32πa2. Khi đó bán kính của mặt cầu bằng