Cho bất phương trình log7(x2 +2x + 2) + 1 > log7(x2 + 6x + 5 + m). Có tất cả bao nhiêu giá trị nguyên của m để bất phương trình trên có tập nghiệm chứa khoảng (1; 3)?
A. 36.
B. 34.
C. vô số.
Đáp án đúng là A
Bất phương trình
,∀ x ∈ (1; 3) (*)
Với f (x) = −x2 – 6x – 5; g(x) = 6x2 + 8x + 9. Xét sự biến thiên của hai hàm số f (x) và g (x)
+ f '(x) = −2x – 6 < 0, ∀ x ∈ (1; 3) f (x) luôn nghịch biến trên khoảng (1; 3)
f (x) = f (1) = –12
+g'(x) = 12x + 8 > 0, ∀ x ∈ (1; 3) g (x) luôn đồng biến trên khoảng (1; 3)
g (x) = g (1) = 23
Lúc này (*)
Khi đó –12≤ m≤ 23. Mà m∈ ℤ nên m ∈ {–12; –11; –10;…..; 22; 23}
Vậy có tất cả 36 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Cho hàm số y = f (x) có đạo hàm liên tục trên khoảng (1; +∞) thỏa mãn [xf '(x) − 2 f (x)] lnx = x3 – f (x), ∀ x ∈ (1; + ∞); và f ( ) = 3e. Giá trị nhỏ nhất của hàm số y = f (x) trên khoảng (1; +∞) thuộc khoảng nào dưới đây?
Cho hình lăng trụ tam giác đều ABC.A'B'C' có độ dài cạnh đáy bằng a , độ dài cạnh bên bằng 2a. Thể tích của khối cầu ngoại tiếp hình lăng trụ đó bằng
Cho khối nón có bán kính đáy bằng 2, chiều cao bằng 3. Thể tích của khối nón đã cho bằng
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A (1; 3; 5), B (2; 0; l), C (0; 9; 0). Tìm tọa độ trọng tâm G của tam giác ABC.
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình 22x+4 − .m = 0 có hai nghiệm thực phân biệt?
Cho hàm số f (x) có đạo hàm liên tục trên đoạn [−1; 3] và thỏa mãn f (−1) = 4, f (3) = 7. Giá trị của I = bằng
Cho mặt cầu có diện tích bằng 32πa2. Khi đó bán kính của mặt cầu bằng
Cho hàm số y = f (x) liên tục trên [a; b] , viết công thức tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = f (x), trục Ox và các đường thẳng x = a, x = b (a < b).
Cho hai hàm số f (x), g (x) liên tục trên K, a, b ∈ K và k ∈ ℝ . Khẳng định nào sau đây sai?