Cho bất phương trình log7(x2 +2x + 2) + 1 > log7(x2 + 6x + 5 + m). Có tất cả bao nhiêu giá trị nguyên của m để bất phương trình trên có tập nghiệm chứa khoảng (1; 3)?
A. 36.
B. 34.
C. vô số.
Đáp án đúng là A
Bất phương trình
,∀ x ∈ (1; 3) (*)
Với f (x) = −x2 – 6x – 5; g(x) = 6x2 + 8x + 9. Xét sự biến thiên của hai hàm số f (x) và g (x)
+ f '(x) = −2x – 6 < 0, ∀ x ∈ (1; 3) f (x) luôn nghịch biến trên khoảng (1; 3)
f (x) = f (1) = –12
+g'(x) = 12x + 8 > 0, ∀ x ∈ (1; 3) g (x) luôn đồng biến trên khoảng (1; 3)
g (x) = g (1) = 23
Lúc này (*)
Khi đó –12≤ m≤ 23. Mà m∈ ℤ nên m ∈ {–12; –11; –10;…..; 22; 23}
Vậy có tất cả 36 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Cho hàm số y = f (x) có đạo hàm liên tục trên khoảng (1; +∞) thỏa mãn [xf '(x) − 2 f (x)] lnx = x3 – f (x), ∀ x ∈ (1; + ∞); và f ( ) = 3e. Giá trị nhỏ nhất của hàm số y = f (x) trên khoảng (1; +∞) thuộc khoảng nào dưới đây?
Cho hình lăng trụ tam giác đều ABC.A'B'C' có độ dài cạnh đáy bằng a , độ dài cạnh bên bằng 2a. Thể tích của khối cầu ngoại tiếp hình lăng trụ đó bằng
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A (1; 3; 5), B (2; 0; l), C (0; 9; 0). Tìm tọa độ trọng tâm G của tam giác ABC.
Cho khối nón có bán kính đáy bằng 2, chiều cao bằng 3. Thể tích của khối nón đã cho bằng
Cho hàm số f (x) có đạo hàm liên tục trên đoạn [−1; 3] và thỏa mãn f (−1) = 4, f (3) = 7. Giá trị của I = bằng
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình 22x+4 − .m = 0 có hai nghiệm thực phân biệt?
Cho hàm số y = f (x) liên tục trên [a; b] , viết công thức tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = f (x), trục Ox và các đường thẳng x = a, x = b (a < b).
Kí hiệu z1, z2 là hai nghiệm phức của phương trình 2z2 – 4z + 11 = 0. Giá trị biểu thức P = 2z1z2 + 2z1 + 2z2 bằng
Cho mặt cầu có diện tích bằng 32πa2. Khi đó bán kính của mặt cầu bằng