Giá trị của giới hạn limx→+∞x2+x−x3−x23
A. 56
B. +∞
C. -1
D. -∞
limx→+∞x2+x−x3−x23=limx→+∞x2+x−x+x−x3−x23=limx→+∞xx2+x+x+x2x2+xx3−x23+x3−x223=limx→+∞11+1x+1 + 11+1−1x3+(1−1x)23 =12+13=56
Đáp án cần chọn là: A
Biết rằng a+b=4;limx→1a1−x−b1−x3 hữu hạn. Tính giới hạn L=limx→1b1−x3−a1−x
Tính limx→−∞x3x+22x3+x2−1
Cho hàm số f(x)=x2+2x+4−x2−2x+4. Khẳng định nào sau đây là đúng?
Tính limx→01+2x.1+3x3.1+4x4−1x
Tìm tất cả các giá trị của a để limx→−∞2x2+1+ax là
Biết rằng limx→−32(x3+33)3−x2=a3+b. Tính a2+b2
Tính limx→+∞x+1x+2...x+nn−x bằng
Giá trị của giới hạn limx→021+x−8−x3x là
Tính limx→−∞x2+1+x−1 bằng
Cho hàm số y=sinx2. Đạo hàm yn là
Đạo hàm cấp n của hàm số y=xx2+5x+6 là
Đạo hàm cấp n của hàm số y=2x+1x2−3x+2là
Đạo hàm cấp n của hàm số y=2x+1 là
Cho hàm số y=sin22x. Giá trị của biểu thức y3+y''+16y'+16y−8 là