Cho tam thức bậc hai f(x) = a + bx + c, (a ≠ 0) có biệt thức Δ = - 4ac. Chọn khẳng định đúng:
A. Nếu Δ < 0 thì af(x) > 0, ∀x ∈ R
B. Nếu Δ > 0 thì af(x) < 0, ∀x ∈ R
C. Nếu Δ ≤ 0 thì af(x) ≥ 0, ∀x ∈ R
D. Nếu Δ ≥ 0 thì af(x) > 0, ∀x ∈ R
Đáp án A.
Ta có: nếu Δ < 0 thì f(x) luôn cùng dấu với hệ số a với mọi giá trị của x, tức là af(x) > 0, ∀x ∈ R
Bất phương trình nào sau đây tương đương với bất phương trình x + 5 ≥ 0?
Cho bảng xét dấu:
Hỏi bảng xét dấu trên của tam thức nào sau đây:
Tìm các giá trị của m để bất phương trình sau vô nghiệm:
f(x) = (m + 1) - 2(3 - 2m)x + m + 1 ≥ 0