Cho hàm số f(x) = ax2 + bx + c đồ thị như hình. Hỏi với những giá trị nào của tham số thực m thì phương trình |f(x)| = m có đúng 4 nghiệm phân biệt.
A. 0 < m < 1.
B.m > 3.
C.m = −1, m = 3.
D. −1 < m < 0.
Từ đó suy ra cách vẽ đồ thị hàm số (C) từ đồ thị hàm số y = f(x) như sau:
+ Giữ nguyên đồ thị y = f(x) phía trên trục hoành.
+ Lấy đối xứng phần đồ thị y = f(x) phía dưới trục hoành qua trục hoành (bỏ phần dưới).
Kết hợp hai phần ta được đồ thị hàm số y =| f(x)| như hình vẽ.
Phương trình |f(x)| = m là phương trình hoành độ giao điểm của đồ thị hàm số
y = |f(x)| và đường thẳng y = m (song song hoặc trùng với trục hoành).
Dựa vào đồ thị, ta có yêu cầu bài toán ⇔ 0 < m < 1.
Đáp án cần chọn là: A
Cho hàm số y = ax2 + bx + c có đồ thị (P) như hình vẽ.
Khẳng định nào sau đây là sai?
Tìm giá trị của m để hàm số y = −x2 + 2x + m − 5 đạt giá trị lớn nhất bằng 6
Tìm giá trị của m để đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ dương
Viết phương trình của Parabol (P) biết rằng (P) đi qua các điểm A (0; 2),
B (-2; 5), C (3; 8)
Xác định parabol (P): y = 2x2 + bx + c, biết rằng (P) đi qua điểm M(0;4) và có trục đối xứng x = 1.
Nếu hàm số y = ax2 + bx + c có a < 0, b > 0 và c > 0 thì đồ thị của nó có dạng
Tìm các giá trị thực của tham số m để phương trình |x2 − 3x + 2| = m có bốn nghiệm thực phân biệt.
Tìm các giá trị của tham số m để phương trình có 3 nghiệm phân biệt
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = f(x) = x2 − 4x + 3 trên đoạn [−2; 1].
Khi tịnh tiến parabol y = 2x2 sang trái 3 đơn vị, ta được đồ thị của hàm số:
Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt giá trị lớn nhất bằng 5 tại x = − 2 và có đồ thị đi qua điểm M (1; −1). Tính tổng S = a2 + b2 + c2.