Điều kiện của m để bất phương trình ( 2m+1) x+ m-5 ≥ 0 nghiệm đúng với mọi x thỏa mãn 0< x< 1 :
A. -1/2 < m < 5
B. m = 5
C. m= 5 và m= 1
D. m ≥ 5
Chọn D
Ta có: ( 2m+1) x+ m-5 ≥ 0 tương đương: ( 2m+ 1) x≥ 5- m (*)
+ TH1: Với m> -1/2 , bất phương trình (*) trở thành:
Tập nghiệm của bất phương trình là
Để bất phương trình đã cho nghiệm đúng với 0< x< 1 thì
Hay
+ TH2: m= -1/ 2, bất phương trình (*) trở thành: 0x ≥ 5+ 1/2
Bất phương trình vô nghiệm. Nên không có m thỏa mãn
+ TH3: Với m< -1/ 2 , bất phương trình (*) trở thành:
Tập nghiệm của bất phương trình là
Để bất phương trình đã cho nghiệm đúng với 0< x < 1thì
Hay
Kết hợp điều kiện m< -1/ 2 nên không có m thỏa mãn.
Vậy với m ≥ 5, bất phương trình đã cho nghiệm đúng với mọi x: 0< x< 1
Với x thuộc tập hợp nào dưới đây thì nhị thức bậc nhất luôn âm.
Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình vô nghiệm.
Với giá trị nào của a thì hai bất phương trình sau đây tương đương?
(a-1) x- a+ 3> 0 (1)
(a+1) x-a+2> 0 (2)
Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình
có nghiệm.
Cho bất phương trình : Xét các mệnh đề sau:
(1) Bất phương trình tương đương với mx - 2 <0
(2) m ≥ 0 là điều kiện cần để mọi x< 1 là nghiệm của bất phương trình (*)
(3) Với m < 0 , tập nghiệm của bất phương trình là 2/m< x< 1
Mệnh đề nào đúng?