Qua A vẽ đường thẳng xy // PQ
Trên tia Ax lấy điểm M, trên tia Ay lấy điểm N sao cho AM = AN = PQ
Như vậy các điểm M và N cố định.
Tứ giác AMBD có hai cạnh đối diện song song và bằng nhau nên là hình bình hành => BM // AD
Mặt khác, BC // AD nên ba điểm B, M, C thẳng hàng (tiên đề Ơ-clit)
Do đó đường thẳng BC đi qua điểm cố định M.
Chứng minh tương tự, ta được đường thẳng CD đi qua điểm cố định N.Cho hình bình hành ABCD (AD < AB) . Vẽ ra ngoài hình bình hành tam giác ABM cân tại B và tam giác ADN cân tại D sao cho
a) Chứng minh rằng CM = CN
Cho hình bình hành ABCD. Vẽ ra ngoài hình bình hành các tam giác ABM vuông cân tại A, tam giác BCN vuông cân tại C. Chứng minh rằng tam giác DMN vuông cân.
Cho hình bình hành ABCD và đường thẳng xy không cắt các cạnh của hình bình hành. Qua các đỉnh A, B, C, D vẽ các đường thẳng vuông góc với xy, cắt xy lần lượt tại A', B', C', D'. Chứng minh rằng: AA' + CC' = BB' + DD'