Ta có: (hai góc kề bù).
Do AB cố định nên quỹ tích điểm I là cung chứa góc dựng trên đoạn AB.
Phần đảo: Trên cung chứa góc dựng trên đoạn AB, lấy điểm I'. AI' và BI' lần lượt cắt nửa đường tròn (O) tại N' và M'. Khi đó .
Suy ra tam giác M'O'N' đều. Do đó M'N' = R.
Vậy I' là một điểm thuộc quỹ tích.
Kết luận: Quỹ tích các điểm I là cung chứa góc dựng trên đoạn AB.
Cho một đường tròn (O) và dây AB cố định, điểm C chuyển động trên cung lớn AB (C khác A và B). Chứng minh rằng tâm I của đường tròn nội tiếp tam giác ABC chuyển động trên một cung tròn cố định.
Cho nửa đường tròn đường kính AB cố định. C là một điểm trên nửa đường tròn, trên dây AC kéo dài lấy điểm D sao cho CD = CB.
a) Tìm quỹ tích các điểm D khi C chạy trên nửa đường tròn đã cho.Cho hình vuông ABCD. Trên cạnh BC lấy điểm E, trên tia đối của tia CD lấy điểm F sao cho CE = CF. Gọi M là giao điểm của hai đường thẳng DE và BF. Tìm quỹ tích của điểm M khi E di động trên cạnh BC.
Cho nửa đường tròn đường kính AB và một dây AC quay quanh A. Trên nửa mặt phẳng bờ AC không chứa B ta vẽ hình vuông ACDE. Hỏi:
a) Điểm D di động trên đường nào?