Biết rằng P: y = ax2 + bx + 2 (a > 1) đi qua điểm M(–1; 6) và có tung độ đỉnh bằng \( - \frac{1}{4}\). Tính tích P = a.b.
A. P = – 3;
B. P = – 2;
C. P = 192;
D. P = 28.
Đáp án đúng là: C
Vì P đi qua điểm M(– 1; 6) và có tung độ đỉnh bằng \( - \frac{1}{4}\) nên ta có hệ
\( \Leftrightarrow \left\{ \begin{array}{l}a = 16\\b = 12\end{array} \right.\) (thỏa mãn a > 1) hoặc \(\left\{ \begin{array}{l}a = 1\\b = - 3\end{array} \right.\) (loại).
Suy ra P = a.b = 16.12 = 192.
Đáp án đúng là C.
Parabol y = ax2 + bx + c đạt giá trị nhỏ nhất bằng 4 tại x = – 2 và đi qua
A(0; 6) có phương trình là
Cho parabol y = ax2 + bx – 3. Xác định hệ số a, b biết parabol có đỉnh
I(– 1; – 5)
Cho hàm số y = 2x2 – 4x – 1. Kết luận nào đúng trong các kết luận sau
Đồ thị hàm số y = 4x2 – 3x – 1 có dạng nào trong các dạng sau đây?
Cho hàm số y = f(x) có đồ thị như hình sau:
Hàm số đồng biến trên khoảng
Cho hàm số y = ax2 + bx + c có đồ thị như hình dưới đây. Hàm số đó là hàm số nào?
Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt cực đại bằng 3 tại x = 2 và có đồ thị hàm số đi qua điểm A(0; – 1). Tính tổng S = a + b + c.
Cho hàm số y = ax2 + bx + c có đồ thị như hình sau:
Kết luận nào sau đây đúng về hệ số a, b: