Đường tròn (C) đi qua hai điểm A(–1; 2), B(–2; 3) và có tâm I thuộc đường thẳng ∆: 3x – y + 10 = 0. Phương trình đường tròn (C) là:
A. (x + 3)2 + (y – 1)2 = ;
B. (x – 3)2 + (y + 1)2 = ;
C. (x – 3)2 + (y + 1)2 = 5;
D. (x + 3)2 + (y – 1)2 = 5.
Đáp án đúng là: D
Giả sử I(a; b) ∈ ∆: 3x – y + 10 = 0.
Suy ra 3a – b + 10 = 0
⇔ b = 3a + 10.
Khi đó ta có I(a; 3a + 10)
Suy ra
Và
Ta có IA = IB (= R).
⇔ IA2 = IB2
⇔ (–1 – a)2 + (–3a – 8)2 = (–2 – a)2 + (–3a – 7)2
⇔ 1 + 2a + a2 + 9a2 + 48a + 64 = 4 + 4a + a2 + 9a2 + 42a + 49
⇔ 4a = –12
⇔ a = –3.
Với a = –3, ta có b = 3a + 10 = 3.(–3) + 10 = 1.
Suy ra I(–3; 1).
Ta có R2 = IA2 = (–1 – a)2 + (–3a – 8)2 = [–1 – (–3)]2 + [–3.(–3) – 8]2 = 5.
Vậy phương trình đường tròn (C): (x + 3)2 + (y – 1)2 = 5.
Do đó ta chọn phương án D.
Cho phương trình x2 + y2 – 2mx – 4(m – 2)y + 6 – m = 0. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Tọa độ tâm I của đường tròn đi qua ba điểm A(0; 4), B(2; 4), C(4; 0) là:
Đường tròn (C) có tâm I(2; –3) và tiếp xúc với trục Oy có phương trình là:
Cho đường tròn (C): x2 + y2 – 2x – 4y + 1 = 0. Gọi d1, d2 lần lượt là tiếp tuyến của đường tròn (C) tại điểm M(3; 2), N(1; 0). Tọa độ giao điểm của d1 và d2 là:
Tọa độ tâm I và bán kính R của đường tròn (C): 16x2 + 16y2 + 16x – 8y – 11 = 0 là:
Cho phương trình (C): x2 + y2 – 2(m + 1)x + 4y – 1 = 0. Với giá trị nào của m thì đường tròn (C) có bán kính nhỏ nhất?
Đường tròn (C): x2 + y2 – 6x + 2y + 6 = 0 có tâm I và bán kính R là:
Đường tròn (C) có tâm I(1; –5) và đi qua O(0; 0) có phương trình là:
Tọa độ tâm I và bán kính R của đường tròn (C): (x – 1)2 + (y + 3)2 = 16 là:
Đường tròn (C) có tâm I thuộc đường thẳng d: x + 3y + 8 = 0, đi qua điểm A(–2; 1) và tiếp xúc với đường thẳng ∆: 3x – 4y + 10 = 0. Phương trình đường tròn (C) là:
Cho đường tròn (C): (x – 2)2 + (y + 4)2 = 25, biết tiếp tuyến vuông góc với đường thẳng d: 3x – 4y + 5 = 0. Phương trình tiếp tuyến của (C) là:
Cho đường tròn (C): x2 + y2 + 5x + 7y – 3 = 0. Khoảng cách từ tâm của (C) đến trục hoành bằng: