Cho đường tròn (C): x2 + y2 + 4x + 4y – 17 = 0, biết tiếp tuyến của (C) song song với đường thẳng d: 3x – 4y – 2023 = 0. Phương trình tiếp tuyến của đường tròn (C) là:
A. 3x – 4y + 23 = 0; 3x – 4y – 27 = 0;
B. 3x – 4y + 23 = 0; 3x – 4y + 27 = 0;
C. 3x – 4y – 23 = 0; 3x – 4y + 27 = 0;
D. 3x – 4y – 23 = 0; 3x – 4y – 27 = 0.
Gọi ∆ là tiếp tuyến cần tìm.
Phương trình đường tròn (C) có dạng: x2 + y2 – 2ax – 2by + c = 0, với a = –2, b = –2, c = –17.
Suy ra tâm I(–2; –2), bán kính R =
Vì ∆ // d nên phương trình ∆ có dạng: 3x – 4y + d = 0 (d ≠ –2023).
Ta có ∆ là tiếp tuyến của (C).
Suy ra d(I, ∆) = R.
⇔ |d + 2| = 25
⇔ d + 2 = 25 hoặc d + 2 = –25
⇔ d = 23 (nhận) hoặc d = –27 (nhận).
Vậy có 2 tiếp tuyến thỏa yêu cầu bài toán có phương trình là: 3x – 4y + 23 = 0 và 3x – 4y – 27 = 0.
Do đó ta chọn phương án A.
Đường thẳng ∆ đi qua giao điểm của hai đường thẳng d1: 2x + y – 3 = 0 và d2: x – 2y + 1 = 0, đồng thời tạo với d3: y – 1 = 0 một góc Phương trình đường thẳng ∆ là:
Trong mặt phẳng Oxy, cho đường thẳng d: x + 2y – 3 = 0 và hai điểm A(–1; 2). B(2; 1). Điểm C thuộc đường thẳng d sao cho diện tích ∆ABC bằng 2. Tọa độ điểm C là:
Trong mặt phẳng Oxy, cho ∆ABC có A(–3; 0), B(3; 0) và C(2; 6). Gọi H(a; b) là trực tâm của ∆ABC. Giá trị của a + 6b bằng:
Trong mặt phẳng với hệ tọa độ Oxy, cho ∆ABC có A(3; 5), B(9; 7), C(11; –1). Gọi M, N lần lượt là trung điểm của AB và AC. Tọa độ của là:
Tọa độ tâm I của đường tròn đi qua ba điểm A(0; 4), B(2; 4), C(4; 0) là:
Đường tròn (C) có tâm I(–2; 3) và đi qua điểm M(2; –3) có phương trình là:
Giao điểm M của hai đường thẳng (d): và (d’): 3x – 2y – 1 = 0 là:
Cho ∆ABC có A(2; –1), B(4; 5), C(–3; 2). Phương trình tổng quát của đường trung tuyến AM là:
Đường tròn (C) có tâm I thuộc đường thẳng d: x + 3y + 8 = 0, đi qua điểm A(–2; 1) và tiếp xúc với đường thẳng ∆: 3x – 4y + 10 = 0. Phương trình đường tròn (C) là:
Một anten gương đơn hình parabol có phương trình y2 = 20x. Ống thu của anten được đặt tại tiêu điểm của nó. Ta sẽ đặt ống thu tại điểm có tọa độ là:
Trong mặt phẳng Oxy, cho ba điểm A(–1; 1), B(1; 3), C(5; 2). Tọa độ điểm D là đỉnh thứ tư của hình bình hành ABCD là:
Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng là:
Tọa độ tâm I và bán kính R của đường tròn (C): (x + 1)2 + y2 = 8 là:
Cho M(x; y) nằm trên elip (E): . Tỉ số giữa tiêu cự và độ dài trục lớn bằng: