Hướng dẫn giải
Đáp án đúng là: B
Ta có (a + b)5 = a5 + 5a4b +10a3b2 + 10a2b3 + 5ab4 + b5
Do đó: (5 – 2x)5 = 55 + 5.54.(– 2x) + 10.53.(– 2x) 2 + 10.52.(– 2x)3 + 5.5.(– 2x)4 + (– 2x)5
= 3 125 – 6 250x + 5 000x2 – 2 000x3 + 400x4 – 32x5
= – 32x5 + 400x4 – 2 000x3 + 5 000x2 – 6 250x + 3 125
Hệ số của x5 trong khai triển là – 32.
Trong khai triển nhị thức (a + 2)n - 5 (n \( \in \) ℕ). Có tất cả 6 số hạng. Vậy n bằng
Với n là số nguyên dương thỏa mãn \(3C_{n + 1}^3 + A_n^2 = 14\left( {n - 1} \right)\). Trong khai triển biểu thức (x3 + 2y2)n, gọi Tk là số hạng mà tổng số mũ của x và y của số hạng đó bằng 11. Hệ số của Tk là
Hệ số của x2 trong khai triển (2 – 3x)3 là k. Nhận xét nào sau đây đúng về k ?
Cho số tự nhiên n thỏa mãn \[A_n^2 + 2C_n^n = 22\]. Hệ số của số hạng chứa x3 trong khai triển của biểu thức (3x – 4)n bằng
Tính giá trị biểu thức \(T = C_4^0 + \frac{1}{2}C_4^1 + \frac{1}{4}C_4^2 + \frac{1}{8}C_4^3 + \frac{1}{{16}}C_4^4\)