Đường thẳng d đi qua gốc tọa độ O và có vectơ pháp tuyến \[\overrightarrow n = \left( {2;1} \right)\] có phương trình tham số là:
Hướng dẫn giải
Đáp án đúng là: C
Ta có VTPT của đường thẳng d là \[\overrightarrow n = \left( {2;1} \right)\] nên VTCP là \[\overrightarrow u = \left( { - 1;2} \right)\]
Khi đó ta có: \[\left\{ \begin{array}{l}O\left( {0;0} \right) \in d\\{{\vec u}_d} = - \vec u = \left( {1; - 2} \right)\end{array} \right.\]
Phương trình tham số \[d:\left\{ \begin{array}{l}x = t\\y = - 2t\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right).\]
Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng đi qua hai điểm A(a; 0) và B(0; b)?
Đường thẳng d đi qua điểm M(1; – 2) và có vectơ chỉ phương \[\overrightarrow u = \left( {3;5} \right)\] có phương trình tham số là:
Viết phương trình tham số của đường thẳng d đi qua điểm M(6; –10) và vuông góc với trục Oy?