A. x − y + 2z + 9 = 0.
B.
C. x + y + 2z + 9 = 0.
D.
Đáp án đúng là B
Gọi tên phương trình mặt phẳng tiếp xúc với mặt cầu (S): (x – 1)2 + y2 + (z + 2)2 = 6 đồng thời song song với hai đường thẳng d1: = = , d2: = = P . Gọi tâm của mặt cầu (S) là I.
Ta có: Tọa độ tâm I của mặt cầu (S) là: I (1; 0; −2), bán kính mặt cầu bằng
= (3; −1; −1)
= (1; 1; −1)
Vì mặt phẳng (P) song song với hai đường thẳng d1 và d2 vậy nên:
= = [(−1). (−1) − (−1).1; (−1). 1 – 3. (−1);3.1 – (−1).1]
= (2; 2; 4) = (1; 1; 2)
Vậy phương trình mặt phẳng (P) có dạng là: x + y + 2z + d = 0
Vì mặt phẳng (P) tiếp xúc với mặt cầu (S) nên:
d(I, (P)) = =
|d – 3| = 6
Vậy phương trình mặt phẳng (P) là: .
Cho hàm số y = f (x) có đạo hàm liên tục trên khoảng (1; +∞) thỏa mãn [xf '(x) − 2 f (x)] lnx = x3 – f (x), ∀ x ∈ (1; + ∞); và f ( ) = 3e. Giá trị nhỏ nhất của hàm số y = f (x) trên khoảng (1; +∞) thuộc khoảng nào dưới đây?
Cho bất phương trình log7(x2 +2x + 2) + 1 > log7(x2 + 6x + 5 + m). Có tất cả bao nhiêu giá trị nguyên của m để bất phương trình trên có tập nghiệm chứa khoảng (1; 3)?
Cho hình lăng trụ tam giác đều ABC.A'B'C' có độ dài cạnh đáy bằng a , độ dài cạnh bên bằng 2a. Thể tích của khối cầu ngoại tiếp hình lăng trụ đó bằng
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A (1; 3; 5), B (2; 0; l), C (0; 9; 0). Tìm tọa độ trọng tâm G của tam giác ABC.
Cho khối nón có bán kính đáy bằng 2, chiều cao bằng 3. Thể tích của khối nón đã cho bằng
Cho hàm số f (x) có đạo hàm liên tục trên đoạn [−1; 3] và thỏa mãn f (−1) = 4, f (3) = 7. Giá trị của I = bằng
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình 22x+4 − .m = 0 có hai nghiệm thực phân biệt?
Cho hàm số y = f (x) liên tục trên [a; b] , viết công thức tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = f (x), trục Ox và các đường thẳng x = a, x = b (a < b).
Kí hiệu z1, z2 là hai nghiệm phức của phương trình 2z2 – 4z + 11 = 0. Giá trị biểu thức P = 2z1z2 + 2z1 + 2z2 bằng