Cho hàm số y = f (x) có đạo hàm liên tục trên R, đồ thị hàm số f '(x) như hình vẽ dưới đây. Giá trị nhỏ nhất của hàm số g (x) = f (x) − trên đoạn [−2; 1] là
A. g (−1)
B. g (−2)
C. g (0)
Đáp án đúng là C
Ta có: g (x) = f (x) − g' (x) = f '(x) – x
g' (x) = 0 f '(x) – x = 0
f '(x) – x = 0 x = –2; x= 0; x = 1
Vì g' (x) = f '(x) – x nên g' (x) = 0 f '(x) – x = 0
Do đó nghiệm của g' (x) = 0 cũng là x = –2;x= 0; x = 1
Lập bảng biến thiên của g (x) ta được:
Từ bảng biến thiên ta có thể thấy giá trị nhỏ nhất của hàm số g (x) = f (x) − trên đoạn [−2; 1] là g (0).
Cho hàm số y = f (x) có đạo hàm liên tục trên khoảng (1; +∞) thỏa mãn [xf '(x) − 2 f (x)] lnx = x3 – f (x), ∀ x ∈ (1; + ∞); và f ( ) = 3e. Giá trị nhỏ nhất của hàm số y = f (x) trên khoảng (1; +∞) thuộc khoảng nào dưới đây?
Cho bất phương trình log7(x2 +2x + 2) + 1 > log7(x2 + 6x + 5 + m). Có tất cả bao nhiêu giá trị nguyên của m để bất phương trình trên có tập nghiệm chứa khoảng (1; 3)?
Cho hình lăng trụ tam giác đều ABC.A'B'C' có độ dài cạnh đáy bằng a , độ dài cạnh bên bằng 2a. Thể tích của khối cầu ngoại tiếp hình lăng trụ đó bằng
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A (1; 3; 5), B (2; 0; l), C (0; 9; 0). Tìm tọa độ trọng tâm G của tam giác ABC.
Cho khối nón có bán kính đáy bằng 2, chiều cao bằng 3. Thể tích của khối nón đã cho bằng
Cho hàm số f (x) có đạo hàm liên tục trên đoạn [−1; 3] và thỏa mãn f (−1) = 4, f (3) = 7. Giá trị của I = bằng
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình 22x+4 − .m = 0 có hai nghiệm thực phân biệt?
Cho hàm số y = f (x) liên tục trên [a; b] , viết công thức tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = f (x), trục Ox và các đường thẳng x = a, x = b (a < b).
Kí hiệu z1, z2 là hai nghiệm phức của phương trình 2z2 – 4z + 11 = 0. Giá trị biểu thức P = 2z1z2 + 2z1 + 2z2 bằng