Đồ thị hàm số y = –x2 + 2x + 3 cắt trục hoành tại mấy điểm?
Hướng dẫn giải
Đáp án đúng là: D
Cách 1:
Hàm số đã cho có dạng y = ax2 + bx + c, với a = –1, b = 2, c = 3.
∆ = b2 – 4ac = 22 – 4.(–1).3 = 16 > 0.
Suy ra phương trình –x2 + 2x + 3 = 0 có 2 nghiệm x1, x2 phân biệt.
Vì vậy đồ thị hàm số bậc hai y = –x2 + 2x + 3 cắt trục hoành tại hai điểm lần lượt có hoành độ là x1, x2.
Vậy ta chọn phương án D.
Cách 2:
Vẽ đường thẳng y = 0 biểu diễn như trong hình dưới đây:
Do đó đồ thị hàm số cắt trục hoành (y = 0) tại hai điểm phân biệt.
Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ:
Mệnh đề nào dưới đây đúng?
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - 2x + 1,\,\,\,\,khi\,\,x \le - 3\\\frac{{x + 7}}{2},\,\,\,\,\,\,\,\,khi\,\,x > - 3\end{array} \right.\). Nếu f(x0) = 5 thì x0 bằng:
Xét tính đồng biến, nghịch biến của hàm số \(y = \sqrt[3]{x} + 3\).
Cho hàm số \[y = h\left( x \right) = \left\{ \begin{array}{l} - 2\left( {{x^2} + 1} \right),\,\,\,khi\,\,x \le 1\\4\sqrt {x - 1} ,\,\,\,\,\,\,\,\,\,\,khi\,\,x > 1\end{array} \right.\]. Khi đó \(h\left( {\frac{{\sqrt 2 }}{2}} \right)\) bằng:
Cho hàm số \(f\left( x \right) = \sqrt {2x - 7} \). Khẳng định nào sau đây đúng?
Cho hàm số y = f(x) xác định trên đọa [–3; 3] và có đồ thị được biểu diễn như hình bên:
Khẳng định nào sau đây đúng?