Hướng dẫn giải
Đáp án đúng là: A
⦁ Quan sát bảng biến thiên, ta thấy hàm số đồng biến trên khoảng (–∞; 1) và nghịch biến trên khoảng (1; +∞).
Vì vậy ta có a < 0.
Do đó ta loại phương án C, D.
⦁ Quan sát bảng biến thiên, ta thấy khi x = 1 thì y = 3.
Thay x = 1, y = 3 vào hàm số ở phương án A, ta được:
3 = –2.12 + 4.1 + 1 (đúng).
Thay x = 1, y = 3 vào hàm số ở đáp án B, ta được:
3 = –12 + 4.1 + 2 (vô lí).
Vậy ta chọn phương án A.
Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ:
Mệnh đề nào dưới đây đúng?
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - 2x + 1,\,\,\,\,khi\,\,x \le - 3\\\frac{{x + 7}}{2},\,\,\,\,\,\,\,\,khi\,\,x > - 3\end{array} \right.\). Nếu f(x0) = 5 thì x0 bằng:
Xét tính đồng biến, nghịch biến của hàm số \(y = \sqrt[3]{x} + 3\).
Cho hàm số \(f\left( x \right) = \sqrt {2x - 7} \). Khẳng định nào sau đây đúng?
Cho hàm số \[y = h\left( x \right) = \left\{ \begin{array}{l} - 2\left( {{x^2} + 1} \right),\,\,\,khi\,\,x \le 1\\4\sqrt {x - 1} ,\,\,\,\,\,\,\,\,\,\,khi\,\,x > 1\end{array} \right.\]. Khi đó \(h\left( {\frac{{\sqrt 2 }}{2}} \right)\) bằng:
Cho hàm số y = f(x) xác định trên đọa [–3; 3] và có đồ thị được biểu diễn như hình bên:
Khẳng định nào sau đây đúng?