Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 + 2x - 4y + 6z - 2 = 0. Tọa độ tâm I của mặt cầu (S) là
A. I(1; 2; 2);
B. I(-4; 6; 2);
C. I(-1; 2; -3);
Đáp án đúng là: C
Mặt cầu (S): x2 + y2 + z2 + 2x - 4y + 6z - 2 = 0
Û (x2 + 2x + 1) + (y2 - 4y + 4) + (z2 + 6z + 9) = 16
Û (x + 1)2 + (y - 2)2 + (z + 3)2 = 16
Vậy suy ra tọa độ tâm I của mặt cầu (S) là I(-1; 2; -3).
Cho hàm số f (x) có đạo hàm liên tục trên ℝ, f (0) = 0, f '(0) ¹ 0 và thỏa mãn hệ thức f (x).f '(x) + 18x2 = (3x2 + x).f '(x) + (6x + 1).f (x), "x Î ℝ.
Biết , với a, b, c là các số nguyên. Tính giá trị biểu thức P = 2a + 3b + c.
Trong không gian với hệ tọa độ Oxyz, cho điểm I(1; 2; -2) và mặt phẳng (P): 2x + 2y + z + 5 = 0. Mặt cầu (S) có tâm I sao cho mặt phẳng (P) cắt (S) theo giao tuyến là một đường tròn có bán kính . Khi đó phương trình của mặt cầu (S) là
Diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số y = f (x), y = g (x) liên tục trên [a; b] và hai đường thẳng x = a, x = b (a < b) được tính theo công thức
Cho (H) là hình phẳng giới hạn bởi đường cong có phương trình , nửa đường tròn với và trục hoành (phần tô đậm trong hình vẽ). Diện tích của hình (H) bằng
Trong không gian với hệ tọa độ Oxyz, cho điểm M(2; 1; -1) và đường thẳng . Tọa độ điểm H là hình chiếu vuông góc của M trên đường thẳng D là
Gọi z1, z2 là hai nghiệm phức của phương trình z2 + 2z + 10 = 0. Giá trị của biểu thức |z1| + |z2| bằng
Biết với a, b, c là các số nguyên dương. Tính giá trị của biểu thức P = a + b + c.
Cho hình phẳng (H) giới hạn bởi đường cong y = sin x, trục hoành và hai đường thẳng x = 0, x = p. Gọi V là thể tích khối tròn xoay tạo thành khi quay (H) xung quanh trục Ox. Mệnh đề nào dưới đây là Đúng?