Thứ năm, 24/04/2025
IMG-LOGO

Bộ đề thi thử thpt quốc gia môn Toán cực hay (đề 8)

  • 10975 lượt thi

  • 50 câu hỏi

  • 60 phút

Danh sách câu hỏi

Câu 1:

Trong không gian tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi qua điểm A(1;-2;4)  và có vectơ chỉ phương là u=(2;3;-5)

Xem đáp án

Phương trình đường thẳng d là d:{x=1+2ty=-2+3tz=4-5t

Chọn đáp án A.


Câu 2:

Đồ thị hàm số nào dưới đây có tiệm cận ngang?

Xem đáp án

Chọn đáp án A.


Câu 4:

Hình hộp đứng có đáy hình thoi (không phải hình vuông) có bao nhiêu mặt phẳng đối xứng?

Xem đáp án

Hình hộp đứng có đáy là hình thoi có 3 mặt phẳng đối xứng, gồm 2 mặt chéo và 1 mặt phẳng đi qua trung điểm cạnh bên và song song với 2 mặt đáy.

Chọn đáp án D.


Câu 6:

Khối lập phương là khối đa diện đều loại nào dưới đây?

Xem đáp án

Khối lập phương là khối đa diện đều loại{4;3}.

Chọn đáp án C


Câu 7:

Cho hình nón có độ dài đường sinh l=5cm và đường kính của đường tròn đáy bằng 8cm. Tính thể tích của khối nón được tạo bởi hình nón đó.

Xem đáp án

Chọn đáp án C.


Câu 9:

Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng (α): x +y +2z +1 =0; (β): x +y –z +2 =0; (γ):x –y +5 =0. Mệnh đề nào sau đây sai?

Xem đáp án

Chọn đáp án B.


Câu 10:

Cho hàm số y = f(x) xác định và liên tục trên mỗi nửa khoảng (-∞;-2] và [2;+∞) có bảng biến thiên như sau

Tập hợp tất cả các giá trị của m để phương trình f(x)=m có hai nghiệm phân biệt.

Xem đáp án

Chọn đáp án B.


Câu 11:

Cho tứ diện ABCD có BCD tam giác đều cạnh a,AB(BCD) vàAB=a. Tính khoảng cách từ điểm D đến (ABC)?

Xem đáp án

Chọn đáp án B.


Câu 14:

Hàm số y=x2.ex . Giải bất phương trình y’ >0.

Xem đáp án

Chọn đáp án D.


Câu 15:

Cho số phức z =4-3i. Khẳng định nào sau đây là sai?

Xem đáp án

Chọn đáp án C.


Câu 16:

Cho a là các số thực dương nhỏ hơn 1. Trong các khẳng định sau, khẳng định nào đúng?

Xem đáp án

Chọn đáp án A.


Câu 17:

Gọi M là giá trị lớn nhất của hàm số y=lnx2-3-x  trên đoạn [2;5]. Trong các khẳng định sau, khẳng định nào đúng?

Xem đáp án

Chọn đáp án A.


Câu 18:

Gọi a và b lần lượt là phần thực và phần ảo của số phức z=1+1+i+1+i2+...+1+i20. Tính a +b.

Xem đáp án

Chọn đáp án C.


Câu 19:

Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y =sinx.cosx, trục tung, trục hoành và đường thẳng x =π/2 . Tính thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox.

Xem đáp án

Chọn đáp án B.


Câu 21:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B có AB =3, BC =4.SAABC và SA =5. Gọi H là hình chiếu vuông góc của A lên SB và K là trung điểm của SC. Khẳng định nào sau đây đúng?

Xem đáp án

Chọn đáp án B.


Câu 22:

Cho hàm sổ y=f(x). Khẳng định nào sau đây là đúng?

Xem đáp án

Nếu hàm số đạt cực trị tại x0 thì hàm số không có đạo hàm tại x0 hoặc f'x0=0.

Khẳng định đúng là A.

Chọn đáp án A.


Câu 29:

Cho hình lăng trụ đứng ABC.A’B’C’ biết đáy ABC là tam giác đều cạnh a. Khoảng cách từ tâm O của tam giác ABC đến mặt phẳng (A’BC) bằng a/6. Tính thể tích khối lăng trụ ABC.A’B’C’.

Xem đáp án

Chọn đáp án A.


Câu 30:

Có một tấm gỗ hình vuông cạnh 200cm. Cắt một tấm gỗ có hình tam giác vuông, có tổng một cạnh góc vuông và cạnh huyền bằng 120cm từ tấm gỗ trên sao cho tấm gỗ hình tam giác vuông có diện tích lớn nhất. Hỏi cạnh huyền của tấm gỗ bằng bao nhiêu?

Xem đáp án

Chọn đáp án C.


Câu 31:

Một cái phễu có dạng hình nón, chiều cao của phễu là 20 cm. Người ta đổ một lượng nước vào phễu sao cho chiều cao của cột nước trong phễu bằng 10 cm (hình H1). Nếu bịt kín miệng phễu rồi lật ngược phễu lên ( hình H2) thì chiều cao của cột nước trong phễu gần bằng với giá trị nào sau đây?

Xem đáp án

Chọn đáp án C.


Câu 33:

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên mặt đáy (ABCD) trùng với trung điểm AB. Biết AB =a, BC =2a,BD=a10 . Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là 60 độ. Tính thể tích V của khối chóp S.ABCD theo a.

Xem đáp án

Chọn đáp án D.


Câu 44:

Một hộp đựng 26 tấm thẻ được đánh số từ 1 đến 26. Bạn Hải rút ngẫu nhiên cùng một lúc ba tấm thẻ. Hỏi có bao nhiêu cách rút sao cho bất kỳ hai trong ba tấm thẻ lấy ra đó có hai số tương ứng ghi trên hai tấm thẻ luôn hơn kém nhau ít nhất 2 đơn vị?

Xem đáp án

Yêu cầu bài toán thỏa mãn khi ta rút được 3 thẻ sao cho trong đó không có 2 thẻ nào là số tự nhiên liên tiếp

Số cách rút được 3 thẻ bất kì là C263 

Số cách rút được 3 thẻ có đúng 2 số tự nhiên liên tiếp:

Chọn 2 số tự nhiên liên tiếp: {1;2}{2;3}…{25;26}

TH1: Chọn 2 thẻ là {1;2} hoặc{25;26}: có 2 cách

Thẻ còn lại không được là 3 (hoặc 24): 26 -3 =23 (cách)

→ 2.23 =46 (cách)

TH2: Chọn 2 thẻ là: {2;3},{3;3},…{24;25}: 23 cách

Thẻ còn lại chỉ có: 26 -4 =22 (cách) →có 23.22 =506 (cách)

Số cách rút 3 thẻ trong đó có 3 số tự nhiên liên tiếp:

{1;2;3}{2;3;4}…{24;25;26}: 24 cách

Vậy có: C263-46-506-24=2024.

Chọn đáp án D.


Câu 46:

Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.

Xem đáp án

Chọn đáp án A.


Câu 48:

Cho hàm số y =f(x) liên tục trên ℝ, có đồ thị như hình vẽ.

Các giá trị của tham số m để phương trình 4m3+m2f2x+5=f2x+3  có 3 nghiệm phân biệt là?

Xem đáp án

Chọn đáp án B.


Bắt đầu thi ngay