Xác định m để phương trình có 4 nghiệm phân biệt.
A. m ∈ (−16; 16).
B. m ∈ (0; 16)
C. m ∈ ∅.
D. m ∈ [0; 16].
là phương trình hoành độ giao điểm của đường thẳng y = m và đồ thị (C):
Vẽ (P): , lấy đối xứng phần phía dưới Ox của (P) lên trên Ox và xóa đi phần phía dưới Ox (vì ,), ta được đồ thị (C).
Dựa vào đồ thị: phương trình có 4 nghiệm phân biệt khi .
Đáp án cần chọn là: B
Tìm tất cả các giá trị thực của m để phương trình có nghiệm thuộc đoạn :
Có bao nhiêu giá trị nguyên của m để phương trình có 4 nghiệm phân biệt
Để phương trình sau có 4 nghiệm phân biệt: . Giá trị của tham số a là:
Cho hàm số , có đồ thị (P). giả sử d là đường thẳng đi qua A(0; -3) và có hệ số góc k. Xác định k sao cho d cắt đồ thị (P) tại 2 điểm phân biệt, E, F sao cho vuông tại O (O là gốc tọa độ) . Khi đó
Tập tất cả các giá trị của tham số m để phương trình có hai nghiệm dương phân biệt là:
Hỏi có bao nhiêu giá trị m nguyên trong đoạn [0; 2017] để phương trình có hai nghiệm phân biệt?
Một số tự nhiên có hai chữ số có dạng , biết hiệu của hai chữ số đó bằng 3. Nếu viết các chữ số theo thứ tự ngược lại thì được một số bằng số ban đầu trừ đi 10. Khi đó bằng
Tìm m để phương trình có hai nghiệm là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 2 là
Biết phương trình có một nghiệm có dạng , trong đó a, b, c là các số nguyên tố. Tính S=a+b+c
Cho phương trình . Tìm tất cả các giá trị của tham số m để phương trình có hai nghiệm thỏa mãn . Khi đó tổng bình phương các giá trị tìm được của tham số m bằng: