Tỉm giá trị m để phương trình:
a) có 2 nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương.
a) Xét phương trình để phương trình có hai nghiệm trái dấu thì: .
Với , áp dụng hệ thức Vi – ét ta có:
Có nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương suy ra :
trong đó nên .
Từ (1) và (2) suy ra .
Vậy thì phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương.
Chú ý: Đề bài có nghĩa tìm điều kiện để phương trình có 2 nghiệm trái dấu và tổng hai nghiệm âm.
Cho phương trình (x là ẩn số)
a) Tìm điều kiện của m để phương trình đã cho có hai nghiệm phân biệt.
Tìm m để phương trình ( x là ẩn số, m là tham số) có hai nghiệm , thỏa mãn
Cho phương trình: (1) với x là ẩn số.
a) Chứng tỏ phương trình trên luôn có 2 nghiệm phân biệt
b) Tìm m để phương trình đã cho có hai nghiệm sao cho nghiệm này bằng ba lần nghiệm kia.
Cho phương trình (m là tham số).
a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m .
Cho phương trình (m là tham số).
a) Tìm m để phương trình có nghiệm . Tính nghiệm còn lại.
Cho phương trình bậc hai
a) Tìm m để phương trình có hai nghiệm đối nhau.
Cho phương trình . Định m để phương trình có 4 nghiệm phân biệt và tổng bình phương tất cả các nghiệm bằng 10
Cho phương trình (m là tham số). Tìm m để phương trình có hai nghiệm , thỏa mãn