Trắc nghiệm các dạng toán về bội chung, bội chung nhỏ nhất (có đáp án)
-
334 lượt thi
-
15 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Có bao nhiêu số có ba chữ số là bội chung của a và b, biết rằng
BCNN(a,b) = 300.
BCNN(a,b) = 300
BC(a,b) là bội của 300.
=>Tất cả các số có 3 chữ số là bội chung của a và b là: 300, 600, 900
Vậy có tất cả 3 số có ba chữ số là bội của a và b.
Đáp án cần chọn là: C
Câu 2:
Tìm bội chung nhỏ nhất của: 7 và 13
Vì 7 và 13 đều là hai số nguyên tố nên ƯCLN(7,13)=1
Hay 7 và 13 là hai số nguyên tố cùng nhau.
=>BCNN(7,13) = 7 . 13 = 91.
Đáp án cần chọn là: B
Câu 3:
54 và 108 có bội chung nhỏ nhất là
54 =2.33
108 =22.33
Các thừa số chung của 54 và 108 là 2 và 3.
Số mũ lớn nhất của 2 là 2
Số mũ lớn nhất của 3 là 3.
BCNN(54,108)=22.33=108
Đáp án cần chọn là: C
Câu 4:
Thực hiện các phép tính sau: \[\frac{3}{8} + \frac{5}{{24}}\]. Với kết quả là phân số tối giản
Ta có BCNN (8; 24) = 24 nên:
\[\frac{3}{8} + \frac{5}{{24}} = \frac{{3.3}}{{8.3}} + \frac{5}{{24}} = \frac{9}{{24}} + \frac{5}{{24}} = \frac{{14}}{{24}} = \frac{7}{{12}}\]
Đáp án cần chọn là: B
Câu 5:
Cho tập hợp X là ước của 35 và lớn hơn 5. Cho tập Y là bội của 8 và nhỏ hơn 50. Gọi M là giao của 2 tập hợp X và Y, tập hợp M có bao nhiêu phần tử?
Ư(35) ={1,5,7,35}; Ư(35) >5 ⇒ X ={7,35}
B(8) = {0,8,16,24,32,40,48,56,...}
B(8) < 50 ⇒Y={0,8,16,24,32,40,48}
Vì: X ={7,35}; Y ={0,8,16,24,32,40,48}
⇒M = X∩Y=θ⇒M = X∩Y = θ nên tập M không có phần tử nào.
Đáp án cần chọn là: C
Câu 6:
Có bao nhiêu số tự nhiên x khác 0 thỏa mãn x∈BC(12;15;20) và x ≤ 100
Ta có B(12)={0;12;24;36;48;60;72;84;96;...}
B(15)={0;15;30;45;60;75;90;105;...}
B(20)={0;20;40;60;80;100;...}
Nên BC(12;15;20)={0;60;120;...} mà x≤100 và x≠0 nên x=60.
Có một số tự nhiên thỏa mãn đề bài.
Đáp án cần chọn là: D
Câu 7:
Tìm số tự nhiên x nhỏ nhất biết x⁝45;x⁝110 và x⁝75
Vì x⁝45;x⁝110 và x⁝75nên x ϵ BC(45;75;110) mà x nhỏ nhất nên
x = BCNN(45;75;110)
Ta có 45 = 32.5; 75 = 3.52; 110 = 2.5.11
Nên BCNN(45;75;110) = 2.32.52.11 = 4950
Đáp án cần chọn là: C
Câu 8:
Tìm một số tự nhiên biết tích của ước số lớn nhất với bội số nhỏ nhất khác 0 của nó là 256.
x⁝45; x⁝110 và x⁝75
Gọi số cần tìm là a (a≠0)
Ước số lớn nhất của a là a
Bội số nhỏ nhất khác 0 của a là a
Tích của ước số lớn nhất với bội số nhỏ nhất là:
a.a = 256 = 162
⇒a = 16
Vậy số cần tìm là 16.
Câu 9:
Một trường tổ chức cho học sinh đi tham quan bằng ôtô. Nếu xếp 35 hay 40 học sinh lên một ô tô thì đều thấy thiếu mất 5 ghế ngồi. Tính số học sinh đi tam quan biết số lượng học sinh đó trong khoảng từ 800 đến 900 em.
Gọi số học sinh đi thăm quan là x(xϵ N*; 800 ≤ x ≤ 900) (học sinh)
Nếu xếp 35 hay 40 học sinh lên một ô tô thì đều thấy thiếu mất 5 ghế ngồi nghĩa là thừa ra 5 học sinh nên ta có
(x−5)⁝35; (x−5)⁝40 suy ra (x−5) ϵ BC(35;40)
Ta có
35 = 5.7; 40 = 23.5 nên
BCNN(35;40) = 23.5.7 = 280.
Suy ra (x−5) ϵ BC(35;40) = B(280)
= {280;560;840;1120;...}
mà 800 ≤ x ≤ 900 nên x – 5 = 840 hay x = 845.
Vậy số học sinh đi thăm quan là 845 học sinh.
Đáp án cần chọn là: A
Câu 10:
Chị Hòa có một số bông sen. Nếu chị bó thành các bó gồm 3 bông, 5 bông hay 7 bông thì đều vừa hết. Hỏi chị Hòa có bao nhiêu bông sen? Biết rằng chị Hòa có khoảng từ 200 đến 300 bông.
- Gọi số bông sen chị Hòa có là: x (bông, xN).
- Nếu chị bó thành các bỏ bông gồm 3 bông, 5 bông hay 7 bông thì số bông sen chị Hòa có là bội chung của 3, 5 và 7.
- Theo đề bài ta có xe BC(3, 5, 7) và 200 < x < 300
Vì 3, 5, 7 từng đôi một là số nguyên tố cùng nhau.
=>BCNN(3, 5, 7) = 105
=>BC(3, 5, 7) = B(105) = {0; 105, 210, 315;...}
=>x BC(3, 5, 7) = {0, 105, 210, 315,.... }.
Mà 200 ≤ x ≤ 300 nên x = 210.
Vậy số bông sen chị Hòa có là 210 bông.
Đáp án cần chọn là: A
Câu 11:
Lịch xuất bến của một số xe buýt tại bến xe Mỹ Đình (Hà Nội) được ghi ở bảng bên. Giả sử các xe buýt xuất bến cùng lúc vào 10 giờ 35 phút. Hỏi vào sau bao lâu thì cả 3 xe xuất bến cùng một lúc lần nữa (kể từ lần đầu tiên)?
Thời gian các xe cùng xuất bến cách 10h35p các khoảng thời gian là BC(9, 10, 15)
Ta có: 9 = 32, 10 = 2.5, 15 = 3.5.
Thừa số chung và riêng là 2, 3 và 5
Số mũ lớn nhất của 2 là 1
Số mũ lớn nhất của 3 là 2
Số mũ lớn nhất của 5 là 1
=>BCNN(9, 10, 15) = 2.32.5 = 90
Vậy cứ 90 phút thì các xe xuất bến cùng một lúc.
Đáp án cần chọn là: A
Câu 12:
Tìm số tự nhiên n lớn nhất có 3 chữ số sao cho n chia 8 dư 7, chia 31 dư 28.
Vì n chia 8 dư 7 nên (n−7)⁝8(n >7)
⇒n = 8a + 7 với aN
⇒(n+1)⁝8
Vì n chia 31 dư 28 nên (n−28)⁝31(n >28)
⇒ n = 31b + 28 (bN)⇒ (n+3)⁝31
Vì 64⁝8 nên (n+1+64)⁝8 hay (n+65)⁝8(1)Vì 62⁝31 ⇒(n+3+62)⁝31
Hay (n+65)⁝31 (2) Từ (1) và (2)
⇒(n+65)⁝BCNN(8;31)⇒(n+65)⁝248
⇒n = 248k − 65 (kN*)Với k = 1 ⇒n = 248.1 – 65 = 183Với k = 2 ⇒ n = 248.2 – 65 = 431
Với k = 3 ⇒ n = 248.3 – 65 = 679
Với k = 4 ⇒ n = 248.4 – 65 = 927
Với k = 5 ⇒ n = 248.5 – 65 = 1175 (loại) Vì n là số lớn nhất có 3 chữ số nên n = 927.
Đáp án cần chọn là: A
Câu 13:
Cho a; b có BCNN(a; b) = 630; ƯCLN(a; b) = 18. Có bao nhiêu cặp số
a; b thỏa mãn?
Vì ƯCLN(a;b) = 18 nên đặt a = 18x; b = 18y
với x; yN; ƯCLN(x; y) = 1; y ≠ 1.
Vì ƯCLN(a; b).BCNN(a; b) = a.b
Nên 18.630 = 18x.18y
⇒x.y = (18.630):(18.18) hay x.y = 35
mà y ≠ 1. Do đó ta có:
+) Nếu x = 1 thì y = 35 khi đó a = 18.1 = 18; b = 35.18 = 630
+) Nếu x = 5 thì y = 7 khi đó a = 18.5 = 90; b = 7.18 = 126
+) Nếu x = 7 thì y = 5 khi đó a = 18.7 = 126; b = 5.18 = 90
Vậy có ba cặp số a; b thỏa mãn.
Đáp án cần chọn là: D
Câu 14:
Tìm hai số tự nhiên a, b(a < b). Biết a + b = 20, BCNN(a, b) = 15.
Gọi ƯCLN(a,b) = d ⇒ a = d.m, b = d.n; (m,n) = 1
⇒a+b = d(m+n) ⇒d Ư(a+b) hay dƯ(20)
Vì BCNN(a,b) =15 ⇒15⁝d hay dƯ(15)
⇒d ƯC(15;20)Mà ƯCLN(15;20) = 5 nên d = 1 hoặc d = 5
+) Nếu d = 1⇒a.b = 1.15 = 15 = 3.5
Khi đó a + b = 3 + 5 = 8 (loại)
Hoặc a + b = 1+15 = 16 (loại)
+) Nếu d = 5 thì a.b = 5.15 = 75 = 1.75
Khi đó a + b = 15 + 5 = 20 (thỏa mãn)
Hoặc a + b = 1 + 75 = 76 (loại)
Vậy hai số cần tìm là a = 5; b = 15.
Đáp án cần chọn là: D
Câu 15:
Một số tự nhiên aa khi chia cho 7 dư 4; chia cho 9 dư 6. Tìm số dư khi chia a cho 63.
Vì a chia cho 7 dư 4⇒(a + 3)⁝7
a chia cho 9 dư 6 ⇒(a + 3)⁝9
Do đó (a + 3)BC(7; 9) mà BCNN(7; 9) = 63.
Do đó a(a+3)⁝63⇒a chia cho 63 dư.60.
Đáp án cần chọn là: D