Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải (P1)
-
9129 lượt thi
-
30 câu hỏi
-
50 phút
Danh sách câu hỏi
Câu 1:
Trong một lớp học gồm có 18 học sinh nam và 17 học sinh nữ. Giáo viên gọi ngẫu nhiên 4 học sinh lên bảng giải bài tập. Tính xác suất để 4 học sinh được gọi có cả nam và nữ
Đáp án B
Có các trường hợp sau:
+ 1 nam, 3 nữ, suy ra có cách gọi
+ 2 nam, 2 nữ, suy ra có cách gọi
+ 3 nam, 1 nữ, suy ra có cách gọi
Suy ra xác suất sẽ bằng
Câu 2:
Cho hai đường thẳng d1 và d2 song song với nhau. Trên d1 có 10 điểm phân biệt, trên d2 có n điểm phân biệt (n2) Biết rằng có 5700 tam giác có đỉnh là các điểm nói trên. Tìm giá trị của n
Đáp án B
Có 2 trường hợp sau:
+ Lấy 1 điểm trên d1 và 2 điểm trên d2, suy ra cớ 10 tam giác
+ Lấy 2 điểm trên d1 và 1 điểm trên d2, suy ra cớ n tam giác
Suy ra có
Câu 3:
Số cách sắp xếp 6 học sinh ngồi vào 6 trong 10 ghế trên một hàng ngang là:
Đáp án C
Phương pháp: Sử dụng các quy tắc đếm cơ bản.
Cách giải:
Vì có 10 ghế nên bạn thứ nhất có 10 cách xếp.
Bạn thứ hai có 9 cách xếp.
Bạn thứ ba có 8 cách xếp.
Bạn thứ tư có 7 cách xếp.
Bạn thứ năm có 6 cách xếp.
Bạn thứ sáu có 5 cách xếp.
Như vậy có: 10.9.8.7.6.5 = cách xếp
Câu 4:
Đầu tiết học, cô giáo kiểm tra bài cũ bằng cách gọi lần lượt từng người từ đầu danh sách lớp lên bảng trả lời câu hỏi. Biết rằng các học sinh đầu tiên trong danh sách lớp là An, Bình, Cường với xác suất thuộc bài lần lượt là 0,9; 0,7 và 0,8. Cô giáo sẽ dừng kiểm tra sau khi đã có 2 học sinh thuộc bài. Tính xác suất cô giáo chỉ kiểm tra bài cũ đúng 3 bạn trên.
Đáp án D
Phương pháp:
TH1: An và Cường trả lời đúng, Bình trả lời sai.
TH2: Bình và Cường trả lời đúng, An trả lời sai.
Áp dụng quy tắc cộng.
Cách giải:
TH1: An và Cường trả lời đúng, Bình trả lời sai => P1 = 0,9.(1 - 0,7).0,8 = 0,216
TH2: Bình và Cường trả lời đúng, An trả lời sai => P2 = (1 - 0,9).0,7.0,8 = 0,056
Vậy xác suất cô giáo chỉ kiểm tra bài cũ đúng 3 bạn trên là P = P1 + P2 = 0,272
Câu 5:
Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được di chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên 3 bước. Tính xác suất sau 3 bước quân vua trở về đúng ô xuất phát.
Đáp án D
Phương pháp :
Quân vua được di chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng => ||
Gọi A là biến cố : « Quân vua sau 3 bước trở về đúng vị trí ban đầu » . Tính |A| .
Cách giải :
Quân vua được di chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng => || = .
Gọi A là biến cố : « Quân vua sau 3 bước trở về đúng vị trí ban đầu »
TH1: Quân vua di chuyển bước thứ nhất sang ô đen liền kề (được tô màu đỏ) có 4
cách.
Bước đi thứ 2 quân vua di chuyển sang các ô được tô màu vàng có 4 cách.
Bước đi thứ 3 quay về vị trí ban đầu có 1 cách.
Vậy TH này có 4.4 = 16 cách.
TH2: Quân vua di chuyển bước thứ nhất sang các ô trắng liền kề (được tô màu đỏ) có
4 cách.
Bước đi thứ 2 quân vua di chuyển sang các ô được tô màu vàng có 2 cách.
Bước đi thứ 3 quay về vị trí ban đầu có 1 cách.
Vậy TH này có 4.2 = 8 cách
Câu 6:
Một nhóm gồm 10 học sinh trong đó có 7 học sinh nam và 3 học sinh nữ. Chọn ngẫu nhiên 3 học sinh từ nhóm 10 học sinh đó đi lao động. Tính xác suất để trong 3 học sinh được chọn có ít nhất một học sinh nữ.
Đáp án C.
Phương pháp giải: Áp dụng các quy tắc đếm cơ bản
Lời giải:
Chọn 3 học sinh trong 10 học sinh có cách =>
Gọi X là biến cố trong 3 học sinh được chọn có ít nhất một học sinh nữ
Ta xét các trường hợp sau:
TH1. Chọn 1 học sinh nữ và 2 học sinh nam => có cách.
TH2. Chọn 2 học sinh nữ và 1 học sinh nam => có cách.
TH3. Chọn 3 học sinh nữ và 0 học sinh nam => có cách.
Suy ra số kết quả thuận lợi cho biến cố X là n(X) = 63 + 21 + 1 = 85.
Vậy xác suất cần tính là
Câu 7:
Cho tập hợp X gồm 10 phần tử. Số các hoán vị của 10 phần tử của tập hợp X là
Đáp án A.
Phương pháp giải: Hoán vị của n phần tử chính là n giai thừa
Lời giải: Số các hoán vị của 10 phần tử của tập hợp X là 10!.
Câu 8:
Xếp 10 quyển sách tham khảo khác nhau gồm: 1 quyển sách Văn, 3 quyển sách tiếng Anh và 6 quyển sách Toán (trong đó có hai quyển Toán T1 và Toán T2) thành một hàng ngang trên giá sách. Tính xác suất để mỗi quyển sách Tiếng Anh đều được xếp ở giữa hai quyển sách Toán, đồng thời hai quyển Toán T1 và Toán T2 luôn xếp cạnh nhau.
Đáp án A.
Phương pháp giải: Áp dụng các quy tắc đếm cơ bản trong bài toán sắp xếp đồ vật
Lời giải: Xếp 5 quyển Toán (coi Toán T1 và Toán T2 là một) có 5!.2! = 240 cách.
Khi đó, sẽ tạo ra 4 khoảng trống kí hiệu như sau: _T_T_T_T_T_
Xếp 3 quyển sách Tiếng Anh vào 4 khoảng trống giữa hai quyển toán có cách.
Xếp 1 quyển sách Văn vào 3 vị trí còn lại có 3 cách.
Vậy xác suất cần tính là
Câu 9:
Số cách chọn ra 3 học sinh từ 10 học sinh là
Đáp án D
Phương pháp giải: Chọn ngẫu nhiên k phần tử trong n phần tử là tổ hợp chập k của n
Lời giải:
Chọn 3 học sinh từ 10 học sinh là một tổ hợp chập 3 của 10 phần tử => có cách.
Câu 10:
Lớp 11B có 20 học sinh gồm 12 nữ và 8 nam. Cần chọn ra 2 học sinh của lớp đi lao động. Tính xác suất để chọn được 2 học sinh trong đó có cả nam và nữ.
Đáp án B
Phương pháp giải: Áp dụng các quy tắc đếm cơ bản
Lời giải:
Chọn 2 học sinh trong 20 học sinh có
Gọi X là biến cố 2 học sinh được chọn trong đó có cả nam và nữ
Chọn 1 học sinh nam trong 8 nam có 8 cách, chọn 1 học sinh nữ trong 12 nữ có 12 cách.
Suy ra số kết quả thuận lợi cho biến cố X là n(X) = 8.12 = 96.
Vậy
Câu 11:
Một người bỏ ngẫu nhiên 4 lá thư vào 4 bì thư đã được ghi sẵn địa chỉ cần gửi. Tính xác suất để có ít nhất 1 lá thư bỏ đúng phong bì của nó.
Đáp án A
Phương pháp giải: Áp dụng nguyên lý bù trừ trong bài toán xác suất
Lời giải:
Ta tính xác suất để xảy ra không một lá thư nào đúng địa chỉ.
Mỗi phong bì có 4 cách bỏ thư vào nên có tất cả 4! cách bỏ thư.
Gọi U là tập hợp các cách bỏ thư và Am là tính chất lá thư thứ m bỏ đúng địa chỉ.
Khi đó, theo công thức về nguyên lý bù trừ, ta có .
Trong đó Nm là số tất cả các cách bỏ thư sao cho có m lá thư đúng địa chỉ.
Nhận xét rằng, Nm là tổng theo mọi cách lấy m lá thư từ 4 lá, với mỗi cách lấy m lá thư, có (4 - m)! cách bỏ m lá thư này đúng địa chỉ, ta nhận được:
Suy ra xác suất cần tìm cho việc không lá thư nào đúng địa chỉ là
Vậy xác suất để có ít nhất 1 lá thư bỏ đúng phong bì của nó là
Câu 12:
Một tổ học sinh có 6 nam và 4 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn đều là nữ:
Đáp án A
Phương pháp
+) Tính số phần tử của không gian mẫu
+) Gọi A là biến cố: “2 người được chọn đều là nữ”, tính A .
+) Tính
Cách giải
Chọn ngẫu nhiên 2 người từ 10 người ta có
Gọi A là biến cố: “2 người được chọn đều là nữ”, ta có |A| =
Vậy =
Câu 13:
Cho đa giác đều n cạnh (n 4). Tìm n để đa giác có số đường chéo bằng số cạnh?
Đáp án A
Phương pháp
Tìm số cạnh và số đường chéo của đa giác đều n cạnh.
Cách giải
Khi nối hai đỉnh bất kì của đa giác ta được một số đoạn thẳng, trong đó bao gồm cạnh của đa giác và đường chéo của đa giác đó.
Đa giác đều n cạnh có n đỉnh, do đó số đường chéo là
Theo giả thiết bài toán ta có
Câu 14:
Cho A là tập hợp các số tự nhiên có 7 chữ số. Lấy một số bất kì của tập A. Tính xác suất để lấy được số lẻ và chia hết cho 9
Đáp án C
Phương pháp
Gọi số lẻ có 7 chữ số chia hết cho 9 cần tìm là x ta có 1000017 x 9999999 hai số lẻ liền nhau chia hết cho 9 cách nhau 18 đơn vị.
Cách giải
Cho A là tập hợp các số tự nhiên có 7 chữ số =>
Số chia hết cho 9 là số có tổng các chữ số chia hết cho 9
Gọi số lẻ có 7 chữ số chia hết cho 9 cần tìm là x ta có 1000017 x 9999999 có số thỏa mãn
Vậy xác suất cần tìm là
Câu 15:
Một nhóm học sinh có 10 người. Cần chọn 3 học sinh trong nhóm để làm 3 công việc là tưới cây, lau bàn và nhặt rác, mỗi người làm một công việc. Số cách chọn là:
Đáp án D
Số cách chọn 3 học sinh trong nhóm làm 3 công việc là
Câu 16:
Gieo đồng thời hai con súc sắc cân đối và đồng chất. Xác suất tổng số chấm trên mặt xuất hiện của hai con súc sắc đó không vượt quá 5 bằng:
Đáp án D
Tổng số chấm bẳng 2 khi số chấm ở 2 con xúc sắc là (1; 1).
Tổng số chấm bẳng 3 khi số chấm ở 2 con xúc sắc là (1; 2); (2; 1)
Tổng số chấm bẳng 4 khi số chấm ở 2 con xúc sắc là (1; 3); (2; 2); (3; 1)
Tổng số chấm bẳng 5 khi số chấm ở 2 con xúc sắc là (1; 4), (2; 3), (3; 2); (4; 1)
Do đó xác suất là
Câu 17:
Chia ngẫu nhiên 9 viên bi gồm 4 viên màu đỏ và 5 viên màu xanh có cùng kích thước thành ba phần, mỗi phần 3 viên. Xác suất để không có phần nào gồm 3 viên bi cùng màu bằng
Đáp án A
HD: Số phần tử của không gian mẫu là = 1680
Gọi X là biến cố “ không có phần nào gồm ba viên bi cùng màu”.
Khi đó, ta xét chia thành 3 phần: (2X – 1Đ), (1Đ – 2X), (1Đ – 2X).
Suy ra có cách chọn => n(X) = 1080. Vậy
Câu 18:
Có bao nhiêu cách xếp 6 bạn A, B, C, D, E, F vào một ghế dài sao cho hai bạn A, F ngồi ở 2 đầu ghế?
Đáp án D
Số cách xếp:
Câu 19:
Có 10 thẻ được đánh số 1, 2, …, 10. Bốc ngẫu nhiên 2 thẻ. Tính xác suất để tích 2 số ghi trên 2 thẻ bốc được là một số lẻ.
Đáp án D
Từ 1 đến 10 có 5 số lẻ, 5 số chẵn.
Tích 2 số lẻ là một số lẻ do đó:
Câu 20:
Cho một đa giác đều (H) có 15 đỉnh. Người ta lập một tứ giác có 4 đỉnh là 4 đỉnh của (H). Tính số tứ giác được lập thành mà không có cạnh nào là cạnh của (H).
Đáp án D
Ta đánh số các đỉnh của đa giác từ 1 đến 15, gọi 4 đỉnh của tứ giác là a, b, c, d (theo thứ tự).
Ta xét 2 trường hợp sau:
Trường hợp 1: a = 1. Vì không thể là cạnh kề đa giác nên không thể có 2 cạnh kề nhau. Nên
Trường hợp 2: a > 1. Tương tự:
Từ (1) và (2) ta có tổng số tứ giác thỏa mãn: .
Tổng quát: Đa giác có n đỉnh số tứ giác lập thành từ 4 đỉnh
Không có cạnh của đa giác là: .
Câu 21:
Có tất cả bao nhiêu số tự nhiên có 3 chữ số và 3 chữ số đó đôi một khác nhau?
Đáp án D
Áp dụng quy tắc nhân ta được số các số số tự nhiên có 3 chữ số và 3 chữ số đo đôi một khác nhau là: 9 x 9 x 8
Câu 22:
Trò chơi quay bánh xe số trong chương trình truyền hình "Hãy chọn giá đúng" của kênh VTV3 Đài truyền hình Việt Nam, bánh xe số có 20 nấc điểm: 5, 10, 15,....., 100 với vạch chia đều nhau và giả sử rằng khả năng chuyển từ nấc điểm đã có tới các nấc điểm còn lại là như nhau.
Trong mỗi lượt chơi có 2 người tham gia, mỗi người được quyền chọn quay 1 hoặc 2 lần, và điểm số của người chơi được tính như sau:
+ Nếu người chơi chọn quay 1 lần thì điểm của người chơi là điểm quay được.
+ Nếu người chơi chọn quay 2 lần và tổng điểm quay được không lớn hơn 100 thì điểm của người chơi là tổng điểm quay được.
+ Nếu người chơi chọn quay 2 lần và tổng điểm quay được lớn hơn 100 thì điểm của người chơi là tổng điểm quay được trừ đi 100.
Luật chơi quy định, trong mỗi lượt chơi người nào có điểm số cao hơn sẽ thắng cuộc, hòa nhau sẽ chơi lại lượt khác.
An và Bình cùng tham gia một lượt chơi, An chơi trước và có điểm số là 75. Tính xác suất để Bình thắng cuộc ngay ở lượt chơi này.
Đáp án B
Bình có 2 khả năng thắng cuộc:
+) Thắng cuộc sau lần quay thứ nhất. Nếu Bình quay vào một trong 5 nấc: 80, 85, 90, 95, 100 thì sẽ thắng nên xác suất thắng cuộc của Bình trường hợp này là
+) Thắng cuộc sau 2 lần quay. Nếu Bình quay lần 1 vào một trong 15 nấc: 5, 10, ..., 75 thì sẽ phải quay thêm lần thứ 2. Ứng với mỗi nấc quay trong lần thứ nhất, Bình cũng có 5 nấc để thắng cuộc trong lần quay thứ 2, vì thế xác suất thắng cuộc của Bình trường hợp này là
Từ đó, xác suất thắng cuộc của Bình là
Câu 23:
Gieo ba con súc sắc cân đối và đồng chất. Xác suất để số chấm xuất hiện trên ba mặt lập thành một cấp số cộng với công sai bằng 1 là
Đáp án C
Số phần tử không gian mẫu là 63 = 216.
Các bộ ba số lập thành một cấp số cộng là (1,2,3), (2,3,4), (3,4,5), (4,5,6). Bốn trường hợp trên với các hoán vị sẽ có 4.6 .
Xác suất cần tìm là
Câu 24:
Từ các chữ số thuộc tập hợp S = có thể lập được bao nhiêu số tự nhiên có chín chữ số khác nhau sao cho chữ số 1 đứng trước chữ số 2, chữ số 3 đứng trước chữ số 4 và chữ số 5 đứng trước chữ số 6?
Đáp án B
Số các số có chín chữ số khác nhau là 9!. Trong 9! số này, số các số mà chữ số 1 đứng trước chữ số 2 hoặc chữ số 1 đứng sau chữ số 2 là bằng nhau. Do đó, số các số mà chữ số 1 đứng trước chữ số 2 là
Tương tự, số các số mà chữ số 1 đứng trước chữ số 2 và chữ số 3 đứng trước chữ số 4 là
Số các số cần tìm là = 45360
Câu 25:
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?
Đáp án C
Số các số tự nhiên thỏa mãn yêu cầu bài toán là: số
Câu 26:
Một đề thi trắc nghiệm gồm 50 câu, mỗi câu có 4 phương án trả lời trong đó chỉ có 1 phương án đúng, mỗi câu trả lời đúng được 0,2 điểm. Một thí sinh làm bài bằng cách chọn ngẫu nhiên 1 trong 4 phương án ở mỗi câu. Tính xác suất để thí sinh đó được 6 điểm
Đáp án A
Mỗi câu trả lời đúng được 0,2 điểm => để đạt được 6 điểm, thí sinh đó phải trả lời đúng câu
Xác suất trả lời đúng một câu là xác suất trả lời sai một câu là
Có cách trả lời đúng 30 trong 50 câu, 20 câu còn lại đương nhiên trả lời sai.
Vậy xác suất để thí sinh đó đạt 6 điểm sẽ là:
Câu 27:
Gieo một con súc sắc cân đối và đồng chất. Giả sử súc sắc xuất hiện mặt b chấm. Xác suất để phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt là
Đáp án D
Phương pháp:
+) Phương trình ax2 + bx + c = 0 có hai nghiệm phân biệt
Cách giải:
Phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt
Vì b là số chấm của con súc sắc nên
Vậy xác suất cần tìm là
Câu 28:
Trong mặt phẳng Oxy, cho hình chữ nhật OMNP với M(0;10), N(100;10) và P(100;0). Gọi S là tập hợp tất cả các điểm A(x;y), (x, y Z) nằm bên trong (kể cả trên cạnh) của OMNP. Lấy ngẫu nhiên một điểm A(x;y) S. Xác suất để x + y 90 bằng
Điểm A(x;y) nằm bên trong (kể cả trên cạnh) của
Có 101 cách chọn x, 11 cách chọn y. Do đó số phần tử của không gian mẫu tập hợp các điểm có tọa độ nguyên nằm trên hình chữ nhật OMNP là n() = 101 x 11
Gọi X là biến cố: “Các điểm A(x;y) thỏa mãn x + y 90”.
Vì
Vậy xác suất cần tính là
Câu 29:
Một hộp đựng 7 quả cầu trắng và 3 quả cầu đỏ. Lấy ngẫu nhiên từ hộp ra 4 quả cầu. Tính xác suất để trong 4 quả cầu được lấy có đúng 2 quả cầu đỏ.
Đáp án C.
Số cách lấy ngẫu nhiên 4 quả là: (cách)
Số cách lấy được 2 quả đỏ, 2 trắng là: (cách)
Xác suất để lấy được đúng 2 quả đỏ là:
Câu 30:
Một người làm vườn có 12 cây giống gồm 6 cây xoài, 4 cây mít và 2 cây ổi. Người đó muốn chọn ra 6 cây giống để trồng. Tính xác suất để 6 cây được chọn, mỗi loại có đúng 2 cây
Đáp án D.
Chọn 2 cây trong 6 cây xoài có cách.
Chọn 2 cây trong 4 cây mít có cách.
Chọn 2 cây trong 2 cây xoài có cách.
Suy ra có tất cả 15 . 6 . 1 = 90 cách chọn 6 cây trồng.
Vậy xác suất cần tính là