Thứ sáu, 25/04/2025
IMG-LOGO
Trang chủ Lớp 11 Toán Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải

Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải

Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải (P1)

  • 9129 lượt thi

  • 30 câu hỏi

  • 50 phút

Danh sách câu hỏi

Câu 1:

Trong một lớp học gồm có 18 học sinh nam và 17 học sinh nữ. Giáo viên gọi ngẫu nhiên 4 học sinh lên bảng giải bài tập. Tính xác suất để 4 học sinh được gọi có cả nam và nữ

Xem đáp án

Đáp án B

Có các trường hợp sau:

+ 1 nam, 3 nữ, suy ra có C181C173 cách gọi

+ 2 nam, 2 nữ, suy ra có C182C172 cách gọi

+ 3 nam, 1 nữ, suy ra có C183C171 cách gọi

Suy ra xác suất sẽ bằng


Câu 2:

Cho hai đường thẳng d1 và d2 song song với nhau. Trên d1 có 10 điểm phân biệt, trên d2 có n điểm phân biệt (n2) Biết rằng có 5700 tam giác có đỉnh là các điểm nói trên. Tìm giá trị của n

Xem đáp án

Đáp án B

Có 2 trường hợp sau:

+ Lấy 1 điểm trên d1 và 2 điểm trên d2, suy ra cớ 10Cn2  tam giác

+ Lấy 2 điểm trên d1 và 1 điểm trên d2, suy ra cớ nC102 tam giác

Suy ra có


Câu 3:

Số cách sắp xếp 6 học sinh ngồi vào 6 trong 10 ghế trên một hàng ngang là:

Xem đáp án

Đáp án C

Phương pháp: Sử dụng các quy tắc đếm cơ bản.

Cách giải:

Vì có 10 ghế nên bạn thứ nhất có 10 cách xếp.

Bạn thứ hai có 9 cách xếp.

Bạn thứ ba có 8 cách xếp.

Bạn thứ tư có 7 cách xếp.

Bạn thứ năm có 6 cách xếp.

Bạn thứ sáu có 5 cách xếp.

Như vậy có: 10.9.8.7.6.5 = A106 cách xếp


Câu 4:

Đầu tiết học, cô giáo kiểm tra bài cũ bằng cách gọi lần lượt từng người từ đầu danh sách lớp lên bảng trả lời câu hỏi. Biết rằng các học sinh đầu tiên trong danh sách lớp là An, Bình, Cường với xác suất thuộc bài lần lượt là 0,9; 0,7 và 0,8. Cô giáo sẽ dừng kiểm tra sau khi đã có 2 học sinh thuộc bài. Tính xác suất cô giáo chỉ kiểm tra bài cũ đúng 3 bạn trên.

Xem đáp án

Đáp án D

Phương pháp:

TH1: An và Cường trả lời đúng, Bình trả lời sai.

TH2: Bình và Cường trả lời đúng, An trả lời sai.

Áp dụng quy tắc cộng.

Cách giải:

TH1: An và Cường trả lời đúng, Bình trả lời sai => P1 = 0,9.(1 - 0,7).0,8 = 0,216

TH2: Bình và Cường trả lời đúng, An trả lời sai => P2 = (1 - 0,9).0,7.0,8 = 0,056

Vậy xác suất cô giáo chỉ kiểm tra bài cũ đúng 3 bạn trên là P = P1 + P2 = 0,272


Câu 5:

Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được di chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên 3 bước. Tính xác suất sau 3 bước quân vua trở về đúng ô xuất phát.

Xem đáp án

Đáp án D

Phương pháp :

Quân vua được di chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng => |Ω

Gọi A là biến cố : «  Quân vua sau 3 bước trở về đúng vị trí ban đầu » . Tính |A| .

Cách giải :

Quân vua được di chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng => |Ω| = 83.

Gọi A là biến cố : «  Quân vua sau 3 bước trở về đúng vị trí ban đầu »

TH1: Quân vua di chuyển bước thứ  nhất sang ô đen liền kề (được tô màu đỏ) có 4

cách.

Bước đi thứ 2 quân vua di chuyển sang các ô được tô màu vàng có 4 cách.

Bước đi thứ 3 quay về vị trí ban đầu có 1 cách.

Vậy TH này có 4.4 = 16 cách.

TH2: Quân vua di chuyển bước thứ nhất sang các ô trắng liền kề (được tô màu đỏ) có

4 cách.

Bước đi thứ 2 quân vua di chuyển sang các ô được tô màu vàng có 2 cách.

Bước đi thứ 3 quay về vị trí ban đầu có 1 cách.

Vậy TH này có 4.2 = 8 cách


Câu 6:

Một nhóm gồm 10 học sinh trong đó có 7 học sinh nam và 3 học sinh nữ. Chọn ngẫu nhiên 3 học sinh từ nhóm 10 học sinh đó đi lao động. Tính xác suất để trong 3 học sinh được chọn có ít nhất một học sinh nữ.

Xem đáp án

Đáp án C.

Phương pháp giải: Áp dụng các quy tắc đếm cơ bản

Lời giải:

Chọn 3 học sinh trong 10 học sinh có C103 cách => n(Ω)=C103=120. 

Gọi  X  là biến cố trong 3 học sinh được chọn có ít nhất một học sinh nữ

Ta xét các trường hợp sau:

TH1. Chọn 1 học sinh nữ và 2 học sinh nam => có C72.C31=63 cách.

TH2. Chọn 2 học sinh nữ và 1 học sinh nam => C71.C32=21 cách.

TH3. Chọn 3 học sinh nữ và 0 học sinh nam => C33=1 cách.

Suy ra số kết quả thuận lợi cho biến cố X là n(X) = 63 + 21 + 1 = 85.

Vậy xác suất cần tính là P=n(X)n(Ω)=85120=1724.


Câu 7:

Cho tập hợp X gồm 10 phần tử. Số các hoán vị của 10 phần tử của tập hợp X là

Xem đáp án

Đáp án A.

Phương pháp giải: Hoán vị của n phần tử chính là n giai thừa

Lời giải: Số các hoán vị của 10 phần tử của tập hợp X là 10!.


Câu 8:

Xếp 10 quyển sách tham khảo khác nhau gồm: 1 quyển sách Văn, 3 quyển sách tiếng Anh và 6 quyển sách Toán (trong đó có hai quyển Toán T1 và Toán T2) thành một hàng ngang trên giá sách. Tính xác suất để mỗi quyển sách Tiếng Anh đều được xếp ở giữa hai quyển sách Toán, đồng thời hai quyển Toán T1 và Toán T2 luôn xếp cạnh nhau.

Xem đáp án

Đáp án A.

Phương pháp giải: Áp dụng các quy tắc đếm cơ bản trong bài toán sắp xếp đồ vật

Lời giải: Xếp 5 quyển Toán (coi Toán T1 và Toán T2 là một) có 5!.2! = 240 cách.

Khi đó, sẽ tạo ra 4 khoảng trống kí hiệu như sau: _T_T_T_T_T_

Xếp 3 quyển sách Tiếng Anh vào 4 khoảng trống giữa hai quyển toán có A43 cách.

Xếp 1 quyển sách Văn vào 3 vị trí còn lại có 3 cách.

Vậy xác suất cần tính là P=240.A43.310!=1210.


Câu 9:

Số cách chọn ra 3 học sinh từ 10 học sinh là

Xem đáp án

Đáp án D

Phương pháp giải: Chọn ngẫu nhiên k phần tử trong n phần tử là tổ hợp chập k của n

Lời giải:

Chọn 3 học sinh từ 10 học sinh là một tổ hợp chập 3 của 10 phần tử =>C103 cách.


Câu 10:

Lớp 11B có 20 học sinh gồm 12 nữ và 8 nam. Cần chọn ra 2 học sinh của lớp đi lao động. Tính xác suất để chọn được 2 học sinh trong đó có cả nam và nữ.

Xem đáp án

Đáp án B

Phương pháp giải: Áp dụng các quy tắc đếm cơ bản

Lời giải:

Chọn 2 học sinh trong 20 học sinh có C202=190n(Ω)=190. 

Gọi X là biến cố 2 học sinh được chọn trong đó có cả nam và nữ

Chọn 1 học sinh nam trong 8 nam có 8 cách, chọn 1 học sinh nữ trong 12 nữ có 12 cách.

Suy ra số kết quả thuận lợi cho biến cố X là n(X) = 8.12 = 96.

Vậy P=n(X)N(Ω)=4895.


Câu 11:

Một người bỏ ngẫu nhiên 4 lá thư vào 4 bì thư đã được ghi sẵn địa chỉ cần gửi. Tính xác suất để có ít nhất 1 lá thư bỏ đúng phong bì của nó.

Xem đáp án

Đáp án A

Phương pháp giải: Áp dụng nguyên lý bù trừ trong bài toán xác suất

Lời giải:

Ta tính xác suất để xảy ra không một lá thư nào đúng địa chỉ.

Mỗi phong bì có 4 cách bỏ thư vào nên có tất cả 4! cách bỏ thư.

Gọi U là tập hợp các cách bỏ thư và Am là tính chất lá thư thứ m bỏ đúng địa chỉ.

Khi đó, theo công thức về nguyên lý bù trừ, ta có N¯=4!-N1+N2-...+(-1)4N4.

Trong đó Nm (1m4)là số tất cả các cách bỏ thư sao cho có m lá thư đúng địa chỉ.

Nhận xét rằng, Nm là tổng theo mọi cách lấy m lá thư từ 4 lá, với mỗi cách lấy m lá thư, có (4 - m)! cách bỏ m lá thư này đúng địa chỉ, ta nhận được:

Suy ra xác suất cần tìm cho việc không lá thư nào đúng địa chỉ là

Vậy xác suất để có ít nhất 1 lá thư bỏ đúng phong bì của nó là P=1-P¯=58.


Câu 12:

Một tổ học sinh có 6 nam và 4 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn đều là nữ:

Xem đáp án

Đáp án A

Phương pháp

+) Tính số phần tử của không gian mẫu  

+) Gọi A là biến cố: “2 người được chọn đều là nữ”, tính A .

+) Tính P(A) = AΩ

Cách giải

Chọn ngẫu nhiên 2 người từ 10 người ta có Ω = C102 

Gọi A là biến cố: “2 người được chọn đều là nữ”, ta có |A| = C42

Vậy P(A) = AΩC42C102 = 215


Câu 13:

Cho đa giác đều n cạnh (n 4). Tìm n để đa giác có số đường chéo bằng số cạnh?

Xem đáp án

Đáp án A

Phương pháp

Tìm số cạnh và số đường chéo của đa giác đều n cạnh.

Cách giải

Khi nối hai đỉnh bất kì của đa giác ta được một số đoạn thẳng, trong đó bao gồm cạnh của đa giác và đường chéo của đa giác đó.

Đa giác đều n cạnh có n đỉnh, do đó số đường chéo là Cn2 - n 

Theo giả thiết bài toán ta có


Câu 14:

Cho A là tập hợp các số tự nhiên có 7 chữ số. Lấy một số bất kì của tập A. Tính xác suất để lấy được số lẻ và chia hết cho 9

Xem đáp án

Đáp án C

Phương pháp

Gọi số lẻ có 7 chữ số chia hết cho 9 cần tìm là x ta có 1000017 x 9999999  hai số lẻ liền nhau chia hết cho 9 cách nhau 18 đơn vị.

Cách giải

Cho A là tập hợp các số tự nhiên có 7 chữ số => Ω = 9.106

Số chia hết cho 9 là số có tổng các chữ số chia hết cho 9

Gọi số lẻ có 7 chữ số chia hết cho 9 cần tìm là x ta có 1000017 x 9999999 có 9999999 - 100001718+1 = 500000 số thỏa mãn

Vậy xác suất cần tìm là 5000009.106 = 118


Câu 16:

Gieo đồng thời hai con súc sắc cân đối và đồng chất. Xác suất tổng số chấm trên mặt xuất hiện của hai con súc sắc đó không vượt quá 5 bằng:

Xem đáp án

Đáp án D

Tổng số chấm bẳng 2 khi số chấm ở 2 con xúc sắc là (1; 1).

Tổng số chấm bẳng 3 khi số chấm ở 2 con xúc sắc là (1; 2); (2; 1)

Tổng số chấm bẳng 4 khi số chấm ở 2 con xúc sắc là (1; 3); (2; 2); (3; 1)

Tổng số chấm bẳng 5 khi số chấm ở 2 con xúc sắc là (1; 4), (2; 3), (3; 2); (4; 1)

Do đó xác suất là 10.136 = 518


Câu 17:

Chia ngẫu nhiên 9 viên bi gồm 4 viên màu đỏ và 5 viên màu xanh có cùng kích thước thành ba phần, mỗi phần 3 viên. Xác suất để không có phần nào gồm 3 viên bi cùng màu bằng

Xem đáp án

Đáp án A

HD: Số phần tử của không gian mẫu là n(Ω) = C93.C63.C33 = 1680 

Gọi X là biến cố “ không có phần nào gồm ba viên bi cùng màu”.

Khi đó, ta xét chia thành 3 phần: (2X – 1Đ), (1Đ – 2X), (1Đ – 2X).

Suy ra có C42.C51.C21.C42.3 = 1080 cách chọn => n(X) = 1080. Vậy 


Câu 20:

Cho một đa giác đều (H) có 15 đỉnh. Người ta lập một tứ giác có 4 đỉnh là 4 đỉnh của (H). Tính số tứ giác được lập thành mà không có cạnh nào là cạnh của (H).

Xem đáp án

Đáp án D

Ta đánh số các đỉnh của đa giác từ 1 đến 15, gọi 4 đỉnh của tứ giác là a, b, c, d (theo thứ tự).

Ta xét 2 trường hợp sau:

Trường hợp 1: a = 1. Vì không thể là cạnh kề đa giác nên không thể có 2 cạnh kề nhau. Nên

Trường hợp 2: a > 1. Tương tự:

Từ (1) và (2) ta có tổng số tứ giác thỏa mãn: C103 + C114 = 450.

Tổng quát: Đa giác có n đỉnh số tứ giác lập thành từ 4 đỉnh

Không có cạnh của đa giác là: n4.Cn-53.


Câu 21:

Có tất cả bao nhiêu số tự nhiên có 3 chữ số và 3 chữ số đó đôi một khác nhau?

Xem đáp án

Đáp án D

Áp dụng quy tắc nhân ta được số các số số tự nhiên có 3 chữ số và 3 chữ số đo đôi một khác nhau là: 9 x 9 x 8


Câu 22:

Trò chơi quay bánh xe số trong chương trình truyền hình "Hãy chọn giá đúng" của kênh VTV3 Đài truyền hình Việt Nam, bánh xe số có 20 nấc điểm: 5, 10, 15,....., 100 với vạch chia đều nhau và giả sử rằng khả năng chuyển từ nấc điểm đã có tới các nấc điểm còn lại là như nhau.

Trong mỗi lượt chơi có 2 người tham gia, mỗi người được quyền chọn quay 1 hoặc 2 lần, và điểm số của người chơi được tính như sau:

+ Nếu người chơi chọn quay 1 lần thì điểm của người chơi là điểm quay được.

+ Nếu người chơi chọn quay 2 lần và tổng điểm quay được không lớn hơn 100 thì điểm của người chơi là tổng điểm quay được.

+ Nếu người chơi chọn quay 2 lần và tổng điểm quay được lớn hơn 100 thì điểm của người chơi là tổng điểm quay được trừ đi 100.

Luật chơi quy định, trong mỗi lượt chơi người nào có điểm số cao hơn sẽ thắng cuộc, hòa nhau sẽ chơi lại lượt khác.

An và Bình cùng tham gia một lượt chơi, An chơi trước và có điểm số là 75. Tính xác suất để Bình thắng cuộc ngay ở lượt chơi này.

Xem đáp án

Đáp án B

Bình có 2 khả năng thắng cuộc:

+) Thắng cuộc sau lần quay thứ nhất. Nếu Bình quay vào một trong 5 nấc: 80, 85, 90, 95, 100 thì sẽ thắng nên xác suất thắng cuộc của Bình trường hợp này là P1 = 520 = 14 

+) Thắng cuộc sau 2 lần quay. Nếu Bình quay lần 1 vào một trong 15 nấc: 5, 10, ..., 75 thì sẽ phải quay thêm lần thứ 2. Ứng với mỗi nấc quay trong lần thứ nhất, Bình cũng có 5 nấc để thắng cuộc trong lần quay thứ 2, vì thế xác suất thắng cuộc của Bình trường hợp này là P2 = 15 × 520 × 20 = 316 

Từ đó, xác suất thắng cuộc của Bình là


Câu 23:

Gieo ba con súc sắc cân đối và đồng chất. Xác suất để số chấm xuất hiện trên ba mặt lập thành một cấp số cộng với công sai bằng 1 là

Xem đáp án

Đáp án C

Số phần tử không gian mẫu là 63 = 216.

Các bộ ba số lập thành một cấp số cộng là (1,2,3), (2,3,4), (3,4,5), (4,5,6). Bốn trường hợp trên với các hoán vị sẽ có 4.6 .

Xác suất cần tìm là 24216 = 19


Câu 24:

Từ các chữ số thuộc tập hợp S = 1,2,3,...,8,9có thể lập được bao nhiêu số tự nhiên có chín chữ số khác nhau sao cho chữ số 1 đứng trước chữ số 2, chữ số 3 đứng trước chữ số 4 và chữ số 5 đứng trước chữ số 6?

Xem đáp án

Đáp án B

Số các số có chín chữ số khác nhau là 9!. Trong 9! số này, số các số mà chữ số 1 đứng trước chữ số 2 hoặc chữ số 1 đứng sau chữ số 2 là bằng nhau. Do đó, số các số mà chữ số 1 đứng trước chữ số 2 là 9!2 

Tương tự, số các số mà chữ số 1 đứng trước chữ số 2 và chữ số 3 đứng trước chữ số 4 là 9!4 

Số các số cần tìm là 9!8 = 45360


Câu 25:

Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?

Xem đáp án

Đáp án C

Số các số tự nhiên thỏa mãn yêu cầu bài toán là: A6 4= 360 số


Câu 26:

Một đề thi trắc nghiệm gồm 50 câu, mỗi câu có 4 phương án trả lời trong đó chỉ có 1 phương án đúng, mỗi câu trả lời đúng được 0,2 điểm. Một thí sinh làm bài bằng cách chọn ngẫu nhiên 1 trong 4 phương án ở mỗi câu. Tính xác suất để thí sinh đó được 6 điểm

Xem đáp án

Đáp án A

Mỗi câu trả lời đúng được 0,2 điểm => để đạt được 6 điểm, thí sinh đó phải trả lời đúng 60,2 = 30 câu

Xác suất trả lời đúng một câu là 14 = 0,25 xác suất trả lời sai một câu là 34 = 0,75

C5030cách trả lời đúng 30 trong 50 câu, 20 câu còn lại đương nhiên trả lời sai.

Vậy xác suất để thí sinh đó đạt 6 điểm sẽ là:


Câu 27:

Gieo một con súc sắc cân đối và đồng chất. Giả sử súc sắc xuất hiện mặt b chấm. Xác suất để phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt là

Xem đáp án

Đáp án D

Phương pháp:

+) Phương trình ax2 + bx + c = 0 có hai nghiệm phân biệt  >0

Cách giải:

Phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt  = b2 - 8 > 0

Vì b là số chấm của con súc sắc nên

Vậy xác suất cần tìm là 46 = 23


Câu 28:

Trong mặt phẳng Oxy, cho hình chữ nhật OMNP với M(0;10), N(100;10)P(100;0). Gọi S là tập hợp tất cả các điểm A(x;y), (x, y Z) nằm bên trong (kể cả trên cạnh) của OMNP. Lấy ngẫu nhiên một điểm A(x;y)  S. Xác suất để x + y 90 bằng

Xem đáp án

Điểm A(x;y) nằm bên trong (kể cả trên cạnh) của 

Có 101 cách chọn x, 11 cách chọn y. Do đó số phần tử của không gian mẫu tập hợp các điểm có tọa độ nguyên nằm trên hình chữ nhật OMNP là n(Ω) = 101 x 11

Gọi X là biến cố: “Các điểm A(x;y) thỏa mãn x + y 90”.

Vậy xác suất cần tính là


Câu 29:

Một hộp đựng 7 quả cầu trắng và 3 quả cầu đỏ. Lấy ngẫu nhiên từ hộp ra 4 quả cầu. Tính xác suất để trong 4 quả cầu được lấy có đúng 2 quả cầu đỏ.

Xem đáp án

Đáp án C.

Số cách lấy ngẫu nhiên 4 quả là: C104 (cách)

Số cách lấy được 2 quả đỏ, 2 trắng là: C42.C72 (cách)

Xác suất để lấy được đúng 2 quả đỏ là:


Câu 30:

Một người làm vườn có 12 cây giống gồm 6 cây xoài, 4 cây mít và 2 cây ổi. Người đó muốn chọn ra 6 cây giống để trồng. Tính xác suất để 6 cây được chọn, mỗi loại có đúng 2 cây

Xem đáp án

Đáp án D.

Chọn 2 cây trong 6 cây xoài có C62 = 15 cách.

Chọn 2 cây trong 4 cây mít có C42 = 6 cách.

Chọn 2 cây trong 2 cây xoài có C22 = 1 cách.

Suy ra có tất cả  15 . 6 . 1 = 90 cách chọn 6 cây trồng.

Vậy xác suất cần tính là


Bắt đầu thi ngay

Bài thi liên quan


Các bài thi hot trong chương