Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P2)
-
9124 lượt thi
-
30 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
An và Bình cùng tham gia kì thi THPT QG năm 2018, ngoài thi ba môn Toán, Văn, Tiếng Anh bắt buộc thì An và Bình đều đăng kí thi thêm đúng hai môn tự chọn khác trong ba môn Vật lí, Hóa học và Sinh học dưới hình thức thi trắc nghiệm để xét tuyển Đại Học. Mỗi môn tự chọn trắc nghiệm có 8 mã đề thi khác nhau, mã đề thi của các môn khác nhau là khác nhau. Tìm xác suất để An và Bình có chung đúng một môn thi tự chọn và chung một mã đề.
Đáp án C
Không gian mẫu là cách chọn môn tự chọn và số mã đề thi có thể nhận được của An và Bình.
An có cách chọn hai môn tự chọn, có mã đề thi có thể nhận cho hai môn tự chọn của An.
Bình giống An. Nên số phần tử của không gian mẫu là
Gọi X là biến cố “An bà Bình có chung đúng một môn thi tự chọn và chung một mã đề”
Số cách chọn môn thi tự chọn của An và Bình là .2! = 6
Trong mỗi cặp để mã đề của An và Bình giống nhau khi An và Bình cùng mã đề của môn chung, với mỗi cặp có cách nhận mã đề của An và Bình là . = 512
Do đó , số kết quả thuận lợ của biến cố X là n(X) = 6.512 = 3072
Vậy xác suất cần tính là
Câu 2:
Trong mặt phẳng cho tập hợp P gồm 10 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Số tam giác có 3 đỉnh đều thuộc P là:
Đáp án C
Số tam giác có 3 đỉnh đều thuộc P là
Câu 3:
Cho tập A có 20 phân tử. Có bao nhiêu tập con của A khác rỗng và số phân tử là số chẵn?
Đáp án A.
Số tập con của A khác rỗng và số phân tử là số chẵn là:
Câu 4:
Nhân dịp lễ sơ kết học kì 1, để thưởng cho 3 học sinh có thành tích tốt nhất lớp cô An đã mua 10 cuốn sách khác nhau và chọn ngẫu nhiên ra 3 cuốn để phát thưởng cho 3 học sinh đó mỗi học sinh nhận 1 cuốn. Hỏi cô An có bao nhiêu cách phát thưởng.
Đáp án B.
Chọn 3 cuốn ngẫu nhiên từ 10 cuốn có cách.
Tặng 3 cuốn cho 3 bạn có 3! cách.
Suy ra số cách phát thưởng là 3!. = cách.
Câu 5:
Đội thanh niên xung kích của trường THPT Chuyên Biên Hòa có 12 học sinh gồm 5 học sinh khối 12, 4 học sinh khối 11 và 3 học sinh khối 10. Chọn ngẫu nhiên 4 học sinh để làm nhiệm vụ mỗi buổi sáng. Tính xác suất sao cho 4 học sinh được chọn thuộc không quá 2 khối.
Đáp án A.
Chọn 4 học sinh có cách chọn.
Chọn 4 học sinh trong đó 4 học sinh được chọn có cả 3 khối có:
Xác xuất để 4 học sinh được chọn có cả 3 khối là P =
Do đó xác suất sao cho 4 học sinh được chọn thuộc không quá 2 khối là
Câu 6:
Gọi A là tập các số tự nhiên có 6 chữ số đôi một khác nhau được tạo ra từ các chữ số 0, 1, 2, 3, 4, 5. Từ A chọn ngẫu nhiên một số. Tính xác suất để số được chọn có chữ số 3 và chữ số 4 đứng cạnh nhau.
Đáp án C.
Số cách lập số có 5 chữ số có 3 và 4 đứng cạnh nhau là 2(4.4.3.2) = 192 cách.
Số cách lập số có 6 chứ số đôi một khác nhau từ A là 5.5.4.3.2=600 cách
Suy ra xác suất cần tìm là
Câu 7:
Tổng số đỉnh, số cạnh và số mặt của hình lập phương là:
Đáp án B
Hình lập phương có 8 đỉnh, 12 cạnh và 6 mặt.
Câu 8:
Từ các chữ số 1; 2; 3 có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau đôi một?
Đáp án B
Câu 9:
Từ các chữ số 0, 1, 2, 3, 5, 8 có thể lập được bao nhiêu số tự nhiên lẻ có bốn chữ số đôi một khác nhau và phải có mặt chữ số 3?
Đáp án B
Xét các số lẻ có 4 chữ số được lập từ các số trên có: 3.4.4.3 = 144 số
Xét các số lẻ có 4 chữ số được lập từ 4 số trên và không có mặt chữ số 3 có: 2.3.3.2 = 36 số
Do đó có 144 - 36 = 108 thỏa mãn.
Câu 10:
Đội thanh niên tình nguyện của một trường THPT có 13 học sinh gồm 4 học sinh khối 10, có 4 học sinh khối 11 và 5 học sinh khối 12. Chọn ngẫu nhiên 4 học sinh đi tình nguyện, hãy tính xác suất để 4 học sinh được chọn có đủ 3 khối.
Đáp án D
Chọn 4 học sinh bất kỳ có:
Gọi A là biến cố: “4 học sinh được chọn có đủ 3 khối”
Khi đó
Câu 11:
Gọi S là tập hợp tất cả các số tự nhiên gồm 5 chữ số đôi một khác nhau được lập từ các chữ số 5, 6, 7, 8, 9. Tính tổng tất các số thuộc tập S.
Đáp án C
Số phần tử của tập S là 5! = 120 số.
Mỗi số 5, 6, 7, 8, 9 có vai trò như nhau và xuất hiện ở hàng đơn vị 4! = 24 lần
Tổng các chữ số xuất hiện ở hàng đơn vị là 4!.(5 + 6 + 7 + 8 + 9) = 840
Tương tự với các chữ số hàng chục, hàng tram, hàng nghìn và hàng chục nghìn.
Vậy tổng tất cả các số thuộc tập S là 840.(104+103+102+10+1) = 9333240
Câu 12:
Từ một hộp chứa 6 quả cầu đỏ và 4 quả cầu xanh, lấy ngẫu nhiên đồng thời 4 quả cầu. Tính xác suất để 4 quả cầu lấy ra cùng màu
Đáp án B
Xác suất để lấy ra 4 quả cùng màu là
Câu 13:
Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập được bao nhiêu số tự nhiên có hai chữ số mà chữ số hàng đơn vị lớn hơn chữ số hàng chục?
Đáp án D
Gọi số hạng cần tìm có dạng với
TH1: Với a = 1 => b = , tức là b có 8 cách chọn
TH2: Với a = 2 => b = , tức là b có 7 cách chọn
Tương tự, với các trường hợp a còn lại, tai được 8+7+.....+1 = 36 số cần tìm
Câu 14:
Cho tập hợp A = . Chọn ngẫu nhiên ba số từ A. Tìm xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp
Đáp án D
Chon 3 số bất kì có cách
TH1: 3 số chọn ra là 3 số tự nhiên liên tiếp có 8 cách
TH2: 3 số chọn ra là 2 số tự nhiên liên tiếp
+) 3 số chọn ra có cặp (1;2) hoặc (9;10) có 2.7 = 14 cách
+) 3 số chọn ra có cặp có 6.6 = 36 cách
Vậy xác suất cần tìm là
Câu 15:
Cho A và B là 2 biến cố độc lập với nhau, P(A) = 0,4; P(B) = 0,3 Khi đó P(A.B) bằng
Đáp án D
Do A và B là 2 biến cố độc lập với nhau nên P(A.B) = P(A).P(B) = 0,12
Câu 17:
Trong kho đèn trang trí đang còn 5 bóng đèn loại I, 7 bóng đèn loại II, các bóng đèn đều khác nhau về màu sắc và hình dáng. Lấy ra 5 bóng đèn bất kỳ. Hỏi có bao nhiêu khả năng xảy ra số bóng đèn loại I nhiều hơn số bóng đèn loại II?
Đáp án A
Có 3 trường hợp xảy ra:
TH1: Lấy được 5 bóng đèn loại I: có 1 cách
TH2: Lấy được 4 bóng đèn loại I, 1 bóng đèn loại II: cách
TH3: Lấy được 3 bóng đèn loại I, 2 bóng đèn loại II: có cách
Theo quy tắc cộng, có
Câu 18:
Chọn ngẫu nhiên một số tự nhiên A có bốn chữ số. Gọi N là số thỏa mãn 3N = A. Xác suất để N là số tự nhiên bằng:
Đáp án A
Ký hiệu B là biến cố lấy được số tự nhiên A thỏa mãn yêu cầu bài toán.
Ta có 3N = A <=> N = log3A
Để N là số tự nhiên thì A = 3m (m N)
Những số A dạng có 4 chữ số gồm 37 = 2187 và 38 = 6561
Câu 19:
Hai người ngang tài ngang sức tranh chức vô địch của một cuộc thi cờ tướng. Người giành chiến thắng là người đầu tiên thắng được năm ván cờ. Tại thời điểm người chơi thứ nhất đã thắng 4 ván và người chơi thứ hai mới thắng 2 ván, tính xác suất để người chơi thứ nhất giành chiến thắng
Đáp án C
Theo giả thiết hai người ngang tài ngang sức nên xác suất thắng thua trong một ván đấu là 0,5; 0,5
Xét tại thời điểm người chơi thứ nhất đã thắng 4 ván và người chơi thứ hai thắng 2 ván. Để người thứ nhất chiến thắng thì người thứ nhất cần thắng 1 ván và người thứ hai thắng không quá hai ván. Có ba khả năng:
TH1: Đánh 1 ván. Người thứ nhất thắng xác suất là (0,5)
TH2: Đánh 2 ván. Người thứ nhất thắng ở ván thứ hai xác suất là (0,5)2
TH3: Đánh 3 ván. Người thứ nhất thắng ở ván thứ ba xác suất là (0,5)3
Vậy
Câu 20:
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức G(x) = 0,035x2 (15 - x), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.
Đáp án B
G(x) = 0,035x2 (15 - x)
Bệnh nhân giảm huyết áp nhiều nhất khi và chỉ khi G(x) đạt giá trị lớn nhất G(x) = 0,105x2 + 1,05x
Cho G(x) = 0 <=> x = 0 hoặc x = 10
G(x) max khi và chỉ khi x = 10
Câu 21:
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?
Đáp án C
Chọn số tự nhiên gồm 4 chữ số trong 6 chữ số có cách chọn
Câu 22:
Môt lớp có 20 nam sinh và 15 nữ sinh. Giáo viên chọn ngẫu nhiên 4 học sinh lên bảng giải bài tâp. Tính xác suất để 4 hoc sinh được gọi có cả nam và nữ.
Đáp án A
Số cách chọn 4 học sinh bất kì (cách).
Số cách chọn 4 học sinh chỉ có nam hoặc chỉ có nữ là (cách).
Do đó số cách chọn 4 học sinh có cả nam và nữ là n(A) = 52360 - 6210 = 46150 (cách).
Vậy xác suất cần tính là
Câu 23:
Một đề thi trắc nghiệm gồm 50 câu, mỗi câu có 4 phương án trả lời trong đó chı̉ có 1 phương án đúng, mỗi câu trả lời đúng được 0,2 điểm. Môt thí sinh làm bài bằng cách chọn ngẫu nhiên 1 trong 4 phương án ở mỗi câu. Tính xác suất để thí sinh đó được 6 điểm.
Đáp án C
Để đạt được 6 điểm thì thí sinh đó phải trả lời đúng 30 câu và trả lời sai 20 câu.
Xác suất trả lời đúng trong 1 câu là 0,25. Xác suất trả lời sai trong 1 câu là 0,75.
Vậy xác suất cần tìm là
Câu 24:
Cho tâp ̣ A gồm n điểm phân biệt trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Tìm n sao cho số tam giác mà 3 đỉnh thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A .
Đáp án C
Theo đề bài ta có
Câu 25:
Lấy ngẫu nhiên hai viên bi từ một thùng gồm 4 bi xanh, 5 bi đỏ và 6 bi vàng. Tính xác suất để lấy được hai viên bi khác màu?
Đáp án là D.
• Số phần tử của không gian mẫu
• Gọi "A": biến cố lấy được hai bi khác màu:
• Xác suất cần tìm
Câu 26:
Có bao nhiêu số có 4 chữ số được viết từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9 sao cho số đó chia hết cho 15?
Đáp án là B.
Gọi số số cần lập có dạng:
• Chọn a có 9 cách, chọn b có 9 cách chọn thì:
+ Nếu a + b + 5 chia hết cho 3 thì có 3 cách chọn.
+ Nếu a + b + 5 chia cho 3 dư 1 thì có 3 cách chọn.
+ Nếu a + b + 5 chia cho 3 dư 2 thì có 3 cách chọn.
Vậy, theo quy tắc nhân ta có: 9.9.3 = 243 số.
Câu 27:
Có 3 bạn nam và 3 bạn nữ được xếp vào một ghế dài có 6 vị trí. Hỏi có bao nhiêu cách xếp sao cho nam và nữ ngồi xen kẽ lẫn nhau?
Đáp án là B.
• Kí hiệu số ghế là 1;2;3;4;5;6.
• Xếp trước 3 nam ngồi ở vị trí số lẻ và 3 nữ ngồi ở vị trí số chẳn và ngược lại
Ta có: 3!.3!.2! = 72
Câu 28:
Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất bao nhiêu mặt?
Đáp án C
Cách giải: Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất 3 mặt.
Câu 29:
Có bao nhiêu số có ba chữ số dạng với sao cho a < b < c.
Đáp án B
Phương pháp: Vì số cần lập có a < b < c và a 0 nên . Như vậy ta xét các TH sẽ tìm được số các chữ số cần lập.
Cách giải: Các số được lập thỏa mãn a < b < c.. Khi đó ta có các trường hợp sau:
TH1: Với a = 1 thì
+) a = 1; b = 2 => c có 4 cách chọn => có 1.1.4 = 4 số
+) a = 1; b = 3 => c có 3 cách chọn => có 1.1.3 = 3 số.
+) a = 1; b = 4 => c có 2 cách chọn => có 1.1.2 = 2 số.
+) a = 1; b = 5 => có 1 cách chọn => có 1.1.1 = 1 số.
Như vậy TH này có: 4 + 3 + 2 + 1 = 10 số được chọn.
TH2: Với a = 2 thì
+) a = 2; b = 3 => có 3 cách chọn => có 1.1.3 = 3 số.
+) a = 2; b = 4 => c có 2 cách chọn => có 1.1.2 = 2 số.
+) a = 2; b = 5 => c có 1 cách chọn => có 1.1.1 = 1 số.
Như vậy TH này có: 3 + 2 + 1 = 6 số được chọn.
TH3: Với a = 3 thì
+) a = 3; b = 4 => c có 2 cách chọn => có 1.1.2 = 2 số.
+) a = 3; b = 4 => c có 1 cách chọn => có 1.1.1 = 1 số.
Như vậy TH này có: 2 + 1 = 3 số được chọn.
TH4: Với a = 4 thì b = 5 ta có các số được chọn: 456 hay có 1 số được chọn.
Như vậy có tất cả: 10 + 6 + 3 + 1 = 20 số được chọn.
Câu 30:
Trong trò chơi “Chiếc nón kì diệu” chiếc kim của bánh xe có thể dừng lại ở một trong 7 vị trí với khả năng như nhau. Tính xác suất để trong ba lần quay, chiếc kim của bánh xe đó lần lượt dừng lại ở ba vị trí khác nhau.
Đáp án C
Phương pháp: Tính số phần tử của không gian mẫu và số phần tử của biến cố, sau đó suy ra xác suất.
Cách giải: Ba lần quay, mỗi lần chiếc kim có 7 khả năng dừng lại, do đó
Gọi A là biến cố: “trong ba lần quay, chiếc kim của bánh xe đó lần lượt dừng lại ở ba vị trí khác nhau" Khi đó ta có:
Lần quay thứ nhất, chiếc kim có 7 khả năng dừng lại.
Lần quay thứ hai, chiếc kim có 6 khả năng dừng lại.
Lần quay thứ ba, chiếc kim có 5 khả năng dừng lại.
Do đó nA = 7.6.5 = 210
Vậy