Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P7)
-
9125 lượt thi
-
30 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Cho đa giác đều có 15 đỉnh. Gọi M là tập tất cả các tam giác có ba đỉnh là ba đỉnh của đa giác đã cho. Chọn ngẫu nhiên một tam giác thuộc tập M, tính xác suất để tam giác được chọn là một tam giác cân nhưng không phải là tam giác đều.
Đáp án B
Số phần tử của tập hợp M là:
Gọi O là tâm đường tròn ngoại tiếp của đa giác đều, Xét một đỉnh A bất kỳ của đa giác: Có 7 cặp đỉnh của đa giác đối xứng với nhau qua đường thẳng OA, hay có 7 tam giác cân tại đỉnh A. Như vậy, với mỗi một đỉnh của đa giác có 7 tam giác nhận nó làm đỉnh tam giác cân.
Số tam giác đều có 3 đỉnh là các đỉnh của đa giác là tam giác.
Tuy nhiên, trong các tam giác cân đã xác định ở trên có cả tam giác đều, do mọi tam giác đều thì đều cân tại 3 đỉnh nên tam giác đều được đếm 3 lần.
Suy ra, số tam giác cân nhưng không phải tam giác đều có 3 đỉnh là 3 đỉnh của đa giác đã cho là: 7.15 – 3.5 = 90
Do đó xác suất cần tìm là .
Câu 2:
Có hai hộp cùng chứa các quả cầu. Hộp thứ nhất có 7 quả cầu đỏ, 5 quả cầu xanh. Hộp thứ hai có 6 quả cầu đỏ, 4 quả cầu xanh. Từ mỗi hộp lấy ra ngẫu nhiên 1 quả cầu. Tính xác suất để 2 quả cầu lấy ra cùng màu đỏ.
Đáp án B
Lấy mỗi hộp 1 quả cầu có: quả cầu.
Gọi A là biến cố: 2 quả cầu lấy ra cùng màu đỏ.
Khi đó: .
Do đó xác suất cần tìm là:
Câu 3:
Có bao nhiêu biển đăng kí xe gồm 6 kí tự trong đó 3 kí tự đầu tiên là 3 chữ cái (sử dụng trong 26 chữ cái ), ba kí tự tiếp theo là ba chữ số. Biết rằng mỗi chữ cái và mỗi chữ số đều xuất hiện không quá một lần:
Đáp án C
Số biển số xe là: 36.25.24.10.9.8 = 11232000 biển.
Câu 4:
Gieo 2 con súc sắc 6 mặt. Tính xác suất để tổng số chấm xuất hiện bằng 12
Đáp án A
Ta có: Không gian mẫu .
Lại có: 12 = 6 + 6. Do đó để tổng số chấm xuất hiện bằng 12 thì có 1 cách duy nhất là cả 2 lần đều hiện lên mặt 6. Vậy xác suất cần tìm là .
Câu 5:
Trong trận đấu bóng đá giữa 2 đội Real madrid và Barcelona, trọng tài cho đội Barcelona được hưởng một quả Penalty. Cầu thủ sút phạt sút ngẫu nhiên vào 1 trong bốn vị trí 1, 2, 3, 4 và thủ môn bay người cản phá ngẫu nhiên đến 1 trong 4 vị trí 1, 2, 3, 4 với xác suất như nhau (thủ môn và cầu thủ sút phạt đều không đoán được ý định của đối phương). Biết nếu cầu thủ sút và thủ môn bay cùng vào vị trí 1 (hoặc 2) thì thủ môn cản phá được cú sút đó, nếu cùng vào vị trí 3 (hoặc 4) thì xác suất cản phá thành công là 50%. Tính xác suất của biến cố “cú sút đó không vào lưới”?
Đáp án B
Gọi A là biến cố “Cú sút đó không vào lưới”. Nếu cầu thủ sút vào vị trí 1 hoặc 2, xác suất để bóng không vào bằng . Nếu cầu thủ sút cào vị trí 3 hoặc 4, xác suất để bóng không vào bằng . Suy ra xác suất để bóng không vào bằng
Câu 6:
Bình A chứa 3 quả cầu xanh, 4 quả cầu đỏ và 5 quả cầu trắng. Bình B chứa 4 quả cầu xanh, 3 quả cầu đỏ và 6 quả cầu trắng. Bình C chứa 5 quả cầu xanh, 5 quả cầu đỏ và 2 quả cầu trắng. Từ mỗi bình lấy một quả cầu. Có bao nhiêu cách lấy để cuối cùng được 3 quả có màu giống nhau.
Đáp án A
Số cách bằng 3.4.5 + 4.3.5 + 5.6.2 = 180 cách.
Câu 7:
Một đội gồm 5 nam và 8 nữ. Lập một nhóm gồm 4 người hát tốp ca, tính xác suất để trong 4 người được chọn có ít nhất 3 nữ ?
Đáp án A
Xác suất cần tìm là: .
Câu 8:
Cho hai đường thẳng song song d1; d2. Trên d1 có 6 điểm phân biệt được tô màu đỏ. Trên d2 có 4 điểm phân biêt được tô màu xanh. Xét tất cả các tam giác được tạo thành khi nối các điểm đó với nhau. Chọn ngẫu nhiên một tam giác, khi đó xác suất để thu được tam giác có hai đỉnh màu đỏ là:
Đáp án B
Số tam giác được tạo bởi 2 đỉnh trên d1 và 1 đỉnh trên d2 là: . Số tam giác được tạo bởi 1 đỉnh trên d1 và 2 đỉnh trên d2 là: . Do đó số tam giác được tạo thành là: 60 + 36 = 96. Xác suất cần tìm là: .
Câu 9:
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có sáu chữ số và thoả mãn điều kiện: sáu chữ số của mỗi số là khác nhau và chữ số hàng nghìn lớn hơn 2?
Đáp án D
Ta xét hai trường hợp chữ số hàng đơn vị bằng 2 và khác 2.
+) Chữ số hàng đơn vị là 2
Số hàng nghìn lớn hơn 2 nên có 4 cách chọn (3, 4, 5, 6). Còn 4 chữ số sắp xếp vào 4 vị trí còn lại có cách xếp.
Như vậy tổng số chữ số thỏa mãn bài toán trong trường hợp này là N1 = 4.24 = 96 (số)
+) Chữ số hàng đơn vị khác 2 nên có thể bằng 4 hoặc 6
Số hàng nghìn lớn hơn 2 nên có 3 cách chọn (3, 5 và 6 hoặc 4). Còn 4 chữ số sắp xếp vào 4 vị trí còn lại có cách xếp.
Như vậy tổng số chữ số thỏa mãn bài toán trong trường hợp này là N2 = 2.3.24 = 144 (số)
=> Tổng số các chữ số thỏa mãn bài toán N = N1 + N2 = 96 + 144 = 240 (số).
Câu 10:
Xác suất bắn trúng mục tiêu của một vận động viên khi bắn một viên đạn là 0,6. Người đó bắn hai viên đạn một cách độc lập. Xác suất để một viên trúng mục tiêu và một viên trượt mục tiêu là
Đáp án C
Gọi A1 là biến cố viên thứ nhất trúng mục tiêu
Gọi A2 là biến cố viên thứ hai trúng mục tiêu
Do A1, A2 là hai biến cố độc lập nên xác suất để có một viên trúng mục tiêu và một viên trượt mục tiêu là
.
Câu 11:
Số cách chọn 3 học sinh trong 6 học sinh và xếp thành một hàng dọc bằng
Đáp án B
+) B1: Chọn 3 HS trong 6 HS có (cách)
+) B2: Xếp 3 HS thành 1 hàng dọc có 3! = 6 (cách)
Vậy có 120 cách.
Câu 12:
Từ tập A = {1;2;3;4;5;6;7;8;9} có thể lập được tất cả bao nhiêu số tự nhiên chia hết cho 3 và ba chữ số phân biệt
Đáp án D
Ta có bộ 3 số có tổng chia hết cho 3 là: {1;2;3}, {1;2;6}, {1;2;9}, {1;3;5}, {1;3;8}, {1;4;7}, {1;5;6},{1;5;9}, {1;6;8}, {1;8;9}, {2;3;4}, {2;3;7}, {2;4;6}, {2;4;9}, {2;5;8}, {2;6;7}, {2;7;9}, {3;4;5}, {3;4;8}, {3;5;7}, {3;6;9}, {3;7;8}, {4;5;6}, {4;5;9}, {4;6;8}, {5;6;7}, {6;7;8}, {7;8;9}.
Mỗi bộ số ta lập được 3! = 6 số.
Vậy có 30.6=180 số.
Câu 13:
Đội dự tuyển học sinh giỏi Toán của tỉnh A có n học sinh n = 9 trong đó có 2 học sinh nữ, tham gia kì thi để chọn đội tuyển chính thức gồm 4 người. Biết xác suất trong đội tuyển chính thức cả 2 học sinh nữ gấp 2 lần xác suất trong đội tuyển chính thức không có học sinh nữ nào. Tìm n?
Đáp án B
Theo đề bài ta có
Câu 14:
Có 10 vị nguyên thủ Quốc gia được xếp ngồi vào một dãy ghế dài (Trong đó có ông Trum và ông Kim). Có bao nhiêu cách xếp sao cho hai vị ngày ngồi cạnh nhau?
Đáp án A
Phương pháp:
- Coi hai ông Trum và Kim là một người thì bài toán trở thành xếp 9 người vào dãy ghế.
- Lại có 2 cách đổi chỗ hai ông Trum và Kim nên từ đó suy ra đáp số.
Cách giải:
Kí hiệu 10 vị nguyên thủ là a, b, c, d, e, f, g, h, i, k.
Và hai ông Trum, Kim lần lượt là a, b.
Nếu ông Trum ngồi lên bên trái ông Kim, tương đương xếp , c, d, e, f , g, h ,i ,k vào 9 vị trí. Ta có cách.
Vậy tổng hợp lại, có cách.
Câu 15:
Giải bóng chuyền VTV cup gồm 9 đội bóng trong đó có 6 đội nước ngoài và 3 đội của Việt Nam. Ban tổ chức cho bốc thăm ngẫu nhiên để chia thành 3 bảng A, B, C và mỗi bảng có ba đội. Tính xác suất để 3 đội bóng của Việt Nam ở 3 bảng khác nhau.
Đáp án B
Số cách sắp ngẫu nhiên là (cách).
Số cách sắp để ba đội của Việt Nam ở 3 bảng khác nhau là
cách.
Xác suất để 3 đội bóng của Việt Nam ở 3 bảng khác nhau là: .
Câu 16:
Từ các chữ số 0, 1, 2, 3, 4 lập được bao nhiêu số có năm chữ số khác nhau từng đôi một?
Đáp án C
Gọi là số thỏa mãn đề bài, ta có
+) a có 4 cách chọn
+) b có 4 cách chọn
+) e có 3 cách chọn
+) d có 2 cách chọn
+) e có 1 cách chọn
Suy ra có 4.4.3.2.1 = 96 cách chọn.
Câu 17:
Một tổ có 6 học sinh nam và 9 học sinh nữ. Hỏi có bao nhiêu cách chọn 6 học sinh đi lao động, trong đó 2 học sinh nam?
Đáp án B
Phải chọn 2 học sinh nam và 4 học sinh nữ => Theo quy tắc nhân số cách chọn là (cách).
Câu 18:
Một tổ có 5 học sinh nữ và 6 học sinh nam. Hỏi có bao nhiêu cách chọn ngẫu nhiên một học sinh của tổ đó đi trực nhật?
Đáp án B.
Số cách chọn ngẫu nhiên một học sinh của tổ đó trực nhật là: 5+6=11 (cách).
Câu 19:
Một hộp đựng 5 bi đỏ và 4 bi xanh. Có bao nhiêu cách lấy 2 bi có đủ cả 2 màu?
Đáp án A.
Số cách lấy thỏa mãn đề bài là cách.
Câu 20:
Một tổ có 5 học sinh nữ và 6 học sinh nam. Số cách chọn ngẫu nhiên 5 học sinh của tổ trong đó có cả học sinh nam và học sinh nữ là
Đáp án C.
Số cách chọn 5 học sinh trong đó có cả nam lẫn nữ là:
Câu 21:
Một con súc sắc không cân đối, có đặc điểm mặt sáu chấm xuất hiện nhiều gấp hai lần các mặt còn lại. Gieo con súc sắc đó hai lần. Xác suất để tổng số chấm trên mặt xuất hiện trong hai lần gieo lớn hơn hoặc bằng 11 bằng
Đáp án A.
Tổng số chấm xuất hiện trong hai lần gieo lớn hơn hoặc bằng 11 khi các kết quả là (6;6), (5;6), (6;5)
Gọi x là xác suất xuất hiện mặt 6 chấm suy ra là xác suất xuất hiện các mặt còn lại.
Ta có:
Do đó xác suất cần tìm là: .
Câu 22:
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số chẵn, mỗi số có 5 chữ số khác nhau trong đó có đúng hai chữ số lẻ và 2 chữ số lẻ đứng cạnh nhau?
Đáp án A
Goi A là số tự nhiên có hai chữ số lẻ khác nhau lấy từ các số 1, 2, 3, 4, 5, 6 số cách chọn được A là . Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa A và ba trong 4 chữ số 0; 2; 4; 6. Gọi ; a, b, c, d {A, 0, 2, 4, 6} là số thỏa mãn yêu cầu bài toán.
*TH1: Nếu d = 0 số cách lập là: .
*TH2: Nếu thì d có 3 cách chọn, a có 3 cách chọn, b có 3 cách chọn, c có 2 cách chọn nên số cách lập là: 3.3.3.2 = 54
Số cách lập: 6(24+54) = 468 cách.
Câu 23:
Cho đa giác đều n đỉnh, và . Tìm n biết rằng đa giác đã cho có 135 đường chéo
Đáp án D
Tìm công thức tính số đường chéo: Số đoạn thẳng tạo bởi n đỉnh là , trong đó có n cạnh, suy ra số đường chéo là .
+ Đa giác đã cho có 135 đường chéo nên .
+ Giải phương trình
<=> n = 18
Câu 24:
Tại một buổi lễ có 13 cặp vợ chồng tham dự. Mỗi ông chồng bắt tay một lần với mọi người trừ vợ mình. Các bà vợ không ai bắt tay với nhau. Hỏi có bao nhiêu cái bắt tay.
Đáp án C
Nếu mỗi người đều bắt tay với tất cả thì có cái bắt tay, trong đó có cái bắt tay giữa các bà vợ và 13 cái bắt tay giữa các cặp vợ chồng.
Như vậy theo điều kiện bài toán sẽ có: (cái bắt tay).
Câu 25:
Thầy Bình đặt lên bàn 30 tấm thẻ đánh số từ 1 đến 30. Bạn An chọn ngẫu nhiên 10 tấm thẻ. Tính xác suất để trong 10 tấm thẻ lấy ra có 5 tấm thẻ mang số lẻ và 5 tấm thẻ mang số chẵn, trong đó chỉ có một tấm mang số chia hết cho 10.
Đáp án A
Chọn 10 tấm bất kỳ có: , trong 30 thẻ có 15 thẻ mang số chẵn, 15 thẻ mang số lẻ và 3 số chia hết cho 10.
Ta chọn 10 tấm thẻ lấy ra 5 tấm thẻ mang số lẻ và 5 tấm thẻ mang số chẵn, trong đó chỉ có một tấm mang số chia hết cho 10 có: cách
Do đó xác suất cần tìm là: .
Câu 26:
Xét tập hợp A gồm tất cả các số tự nhiên có 5 chữ số khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để số được chọn có chữ số đứng sau lớn hơn chữ số đứng trước (tính từ trái sang phải).
Đáp án C
Số các số tự nhiên có 5 chữ số là: 9.9.8.7.6 = 27216.
Số thỏa mãn có chữ số đứng sau lớn hơn chữ số đứng trước (tính từ trái sang phải ) là suy ra .
Với mỗi cách chọn ra 5 số trong 9 số từ 1 đến 9 ta được 1 số thỏa mãn có chữ số đứng sau lớn hơn chữ số đứng trước. Vậy có số.
Vậy xác suất là: .
Câu 27:
Một đề thi trắc nghiệm gồm 50 câu, mỗi câu có 4 phương án trả lời, trong đó chỉ có 1 phương án đúng, mỗi câu trả lời đúng được 0,2 điểm. Một thí sinh làm bài bằng cách chọn ngẫu nhiên 1 trong 4 phương án ở mỗi câu. Tính xác suất để thí sinh đó được 6 điểm.
Đáp án D
Để được 6 điểm học sinh đó cần trả lời đúng 30 câu.
Khi đó xác suất sẽ bằng .
Câu 28:
Có 3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau, 5 viên bi xanh khác nhau. Hỏi có bao nhiêu cách sắp xếp các viên bi trên thành một dãy sao cho các viên bi cùng màu ở cạnh nhau?
Đáp án D
Có 3!(3!4!5!) = 103680 cách.
Câu 29:
Chi đoàn lớp 12A có 20 đoàn viên trong đó có 12 đoàn viên nam và 8 đoàn viên nữ. Tính xác suất khi chọn 3 đoàn viên có ít nhất 1 đoàn viên nữ.
Đáp án B
Chọn 3 đoàn viên trong 20 đoàn viên có cách .
Gọi X là biến cố “chọn được 3 đoàn viên có ít nhất 1 đoàn viên nữ”
TH1: Chọn được 2 nam và 1 nữ => có cách.
TH2: Chọn được 1 nam và 2 nữ => có cách.
TH3: Chọn được 0 nam và 3 nữ => có cách.
Suy ra số kết quả thuận lợi cho biến có X là n = 528 + 336 + 56 = 920.
Vậy xác suất cần tính là:
Câu 30:
Cho 6 chữ số 4, 5, 6, 7, 8, 9. Hỏi có bao nhiêu số tự nhiên gồm 3 chữ số khác nhau được lập thành từ 6 chữ số đó?
Đáp án A
Số các số thỏa mãn đề bài là .