Thứ bảy, 23/11/2024
IMG-LOGO
Trang chủ Lớp 10 Toán Trắc nghiệm Toán 10 Bài 1. Toạ độ của vectơ có đáp án

Trắc nghiệm Toán 10 Bài 1. Toạ độ của vectơ có đáp án

Trắc nghiệm Toán 10 Bài 1. Toạ độ của vectơ có đáp án

  • 232 lượt thi

  • 15 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

Cho A (2; –4), B (–5; 3). Tìm tọa độ của \[\overrightarrow {AB} \].

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Ta có :  \[\overrightarrow {AB} \] = (–5 – 2; 3 – (–4)) = (–7; 7).


Câu 2:

Cho C (3; –4), D (–1; 2). Biểu diễn vectơ \[\overrightarrow {CD} \] qua vectơ \(\overrightarrow i \) và vectơ \(\overrightarrow j \).

Xem đáp án

Hướng dẫn giải

Đáp án đúng là : A

Ta có : \[\overrightarrow {CD} \] = (–1 – 3); 2 – (–4)) = (–4; 6).

Khi đó \[\overrightarrow {CD} = - 4\overrightarrow i + 6\overrightarrow j \].


Câu 3:

Tìm tọa độ của vectơ \[\overrightarrow {EF} \], biết \[\overrightarrow {EF} = 6\overrightarrow i - 9\overrightarrow j \]:
Xem đáp án

Hướng dẫn giải

Đáp án đúng là : A

Ta có : \[\overrightarrow {EF} = 6\overrightarrow i - 9\overrightarrow j \]

\[\overrightarrow {EF} \] = (6; –9).


Câu 4:

Cho các vectơ sau: \[\overrightarrow a = 3\overrightarrow j \], \(\overrightarrow b \left( {0;3} \right)\), \(\overrightarrow c = 3\overrightarrow i \). Có bao nhiêu cặp vectơ bằng nhau:
Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Ta có: \[\overrightarrow a = 3\overrightarrow j \] \(\overrightarrow a = \left( {0;3} \right)\); \(\overrightarrow c = 3\overrightarrow i = \left( {3;0} \right)\).

\(\overrightarrow a = \overrightarrow b \)

Vậy chỉ có 1 cặp vectơ bằng nhau.


Câu 5:

Trong hệ tọa độ Oxy cho A (5; 2), B (10; 8). Tìm tọa độ của vectơ \[\overrightarrow {AB} \].

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Ta có : \[\overrightarrow {AB} \] = (10 – 5 ; 8 – 2) = (5; 6).


Câu 6:

Trong hệ tọa độ Oxy cho ba điểm A (1; 3); B (1; 2); C (2 ; 1). Tìm tọa độ D sao cho tứ giác ABCD là hình chữ nhật.

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Gọi tọa độ của điểm D là D(xD; yD).

Ta có : \[\overrightarrow {BA} \] = (1 – (– 1); 3 – 2) = (2; 1); \(\overrightarrow {CD} \left( {{x_D} + 2;{y_D} - 1} \right)\).

ABCD là hình chữ nhật nên \(\overrightarrow {AB} = \overrightarrow {CD} \) \[\left\{ \begin{array}{l}{x_D} + 2 = 2\\{y_D} - 1 = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 0\\{y_D} = 2\end{array} \right.\] D(0; 2).


Câu 7:

Trong hệ tọa độ Oxy cho hai điểm I (2; 3). Tìm tọa độ điểm M đối xứng với điểm I qua gốc O.

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Tọa độ điểm M đối xứng với điểm I qua gốc O là (2; 3).


Câu 8:

Trong hệ tọa độ Oxy cho ba điểm A(3; 5), B(1; 2), C(5; 2) và D(m ; n) . Tính m + n để ACDB là hình bình hành.
Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Ta có: \(\overrightarrow {AC} = \left( {5 - 3;2 - 5} \right) = \left( {2; - 3} \right)\); \(\overrightarrow {BD} = \left( {m - 1;n - 2} \right)\).

Để ACDB là hình bình hành thì \[\overrightarrow {AC} \] = \(\overrightarrow {BD} \) \(\left\{ \begin{array}{l}m - 1 = 2\\n - 2 = - 3\end{array} \right.\)\(\left\{ \begin{array}{l}m = 3\\n = - 1\end{array} \right.\).

m + n = 3 + (– 1) = 2.


Câu 9:

Trong hệ tọa độ Oxy cho tam giác ABC có trọng tâm G (–1; 1). Tìm tọa độ điểm M đối xứng với G qua trục Oy.

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Tọa độ điểm M đối xứng với G qua trục Oy là: (1; 1).


Câu 10:

Trong hệ tọa độ Oxy cho ba điểm A (–1 ; 1), B (1 ; 3), C (–1; 4) , D(1; 0). Khẳng định nào sau đây đúng?

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Ta có : \[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( {1 - ( - 1);3 - 1} \right) = \left( {2;2} \right)\\\overrightarrow {AC} = \left( { - 2 - ( - 1);0 - 1} \right)\end{array} \right.\] \[ \Leftrightarrow \]\[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( {2;2} \right)\\\overrightarrow {AC} = \left( { - 1; - 1} \right)\end{array} \right.\] nhận thấy

 \[\overrightarrow {AB} \]= -2. (-1; -1) = \[ - 2\overrightarrow {AC} \].


Câu 11:

Trong hệ tọa độ Oxy cho bốn điểm A (3; -2), B (7; 1), C (0; 1), D (-8; -5) Khẳng định nào sau đây đúng?

Xem đáp án

Hướng dẫn giải

Đáp án đúng là : B

Ta có :  \[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( {4;3} \right)\\\overrightarrow {CD} = \left( { - 8; - 6} \right)\end{array} \right.\], nhận thấy \[\overrightarrow {CD} = - 2\overrightarrow {AB} \], suy ra \[\overrightarrow {AB} ,{\rm{ }}\overrightarrow {CD} \] ngược hướng.


Câu 12:

Trong hệ tọa độ Oxy cho A (-1; 5), B (5; 5), C (-1; 11). Khẳng định nào sau đây đúng?

Xem đáp án

Hướng dẫn giải

Đáp án đúng là : C

Ta có : \[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( {6;0} \right)\\\overrightarrow {AC} = \left( {0;6} \right)\end{array} \right.\]\[ \Rightarrow \]\[\overrightarrow {AB} ,{\rm{ }}\overrightarrow {AC} \] không cùng phương.


Câu 13:

Trong hệ tọa độ Oxy cho bốn điểm A(1; 1), B(2; -1), C(4 ; 3), D (3 ; 5) Khẳng định nào sau đây đúng?
Xem đáp án

Hướng dẫn giải

Đáp án đúng là : A

Ta có : \[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( {1; - 2} \right)\\\overrightarrow {DC} = \left( {1; - 2} \right)\end{array} \right.\]\[ \Rightarrow \]\[\overrightarrow {AB} = \overrightarrow {DC} \]\[ \Rightarrow \]ABCD là hình bình hành.


Câu 14:

Trong hệ tọa độ Oxy cho tam giác ABC có A (1; 1), B (-2; -2), C (7; 7) Khẳng định nào sau đây đúng?

Xem đáp án

Hướng dẫn giải

Đáp án đúng là : C

Ta có :\[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( { - 3; - 3} \right)\\\overrightarrow {AC} = \left( {6;6} \right)\end{array} \right.\], nhận thấy \[\overrightarrow {AC} = - 2\overrightarrow {AB} \]. Đẳng thức này chứng tỏ A ở giữa hai điểm B và C.


Câu 15:

Cho hai vectơ \[\overrightarrow u = \left( {2a - 1; - 3} \right)\]\[\overrightarrow v = \left( {3;4b + 1} \right)\]. Tìm các số thực a và b sao cho cặp vectơ đã cho bằng nhau:
Xem đáp án

Hướng dẫn giải

Đáp án đúng là: A

Để \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}2a - 1 = 3\\ - 3 = 4b + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2a = 4\\4b = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 1\end{array} \right.\).

Vậy a = 2 và b = – 1.


Bắt đầu thi ngay